1、三维坐标系怎么看
三维坐标系 需要靠你的想象你!立体感觉。
如果你不能从平面中想象出立体坐标 那么就利用一些道具,摆出三位空间来看着思考 熟能生巧!多思考你就会看懂了.
这个别人无法帮你!
2、全站仪三维坐标测量的具体操作步骤
不同型号的全站仪,其具体操作方法会有较大的差异。下面简要介绍全站仪的基本操作与使用方法。
1.全站仪的基本操作与使用方法
1)水平角测量
(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
(2)设置A方向的水平度盘读数为0°00′00″。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
2)距离测量
(1)设置棱镜常数
测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。
(2)设置大气改正值或气温、气压值
光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。
(3)量仪器高、棱镜高并输入全站仪。
(4)距离测量
照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。
全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。
3)坐标测量
(1)设定测站点度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。
(3)设置棱镜常数。
(4)设置大气改正值或气温、气压值。
(5)量仪器高、棱镜高并输入全站仪。
(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。 参考百度知道: http://.baidu.com/question/40106767.html
3、求汽车制造方面三坐标测量教学视频。零部件或夹具都行,
随着汽车工业的高速发展,汽车的质量越来越在竞争中起着决定性的作用,人们逐渐认识到,在工厂的生产经营中,用三坐标测量机高精度、高效率的自动检测设备可实现对汽车工业生产在线监控和批量监控及产品分析。目前三坐标测量机是很多汽车制造企业计量检测部门运行负荷重的一台仪器,三坐标测量机的引进促进了工厂技术进步和产品质量的提高。
一、三坐标的使用提高了生产工艺水平
采用三坐标测量机检测不仅给出了桃型上各点的数据,而且给出了检测图形,桃型超差部位跃然纸上,角度升程一一对应,几个反复就合格了,精度大大提高,加工时间也缩短了不少。许多工装、模板的形状和位置度公差的检测都是三坐标测量机完成的,产品精度也提高了一个档次。
二、三坐标的使用为工厂高精度设备验收提供保证
企业在引进数控柔性加工设备,除了需进行静态精度检测验收还有综合精度检测验收。都可以用三坐标测量机检测的,在检测的产品不合格时,我们利用三坐标测量机的综合计算分析功能对机床的状态进行分析,根据分析的结果指导对机床的调试,大大节约了调试时间提高了效率。利用三坐标参与工厂重点高精度设备的验收保证了关键设备的精度又验证了关键件的加工程序,为产品质量的提高提供了保障。
三、三坐标的使用提高了检测效率
引进三坐标测量机后,原来需做工装才能完成测量的工件,在三坐标测量机上直接测量就可节省大量的工装制作费用,提高了检测效率。对产品质量我们采用预防原则来进行控制。目前我们已经对重点关键零部件进行定期、定量抽检工作,如连杆、万向轴花键套、花键轴、活塞、泵轮叶片、凸轮轴、气缸盖、增压器叶片、导风轮、轴瓦、小车液力传动箱体、柱塞等产品都列入了抽检计划。对于检测不合格的产品,生产单位均在工艺、工装、机床等方面做了大量改进,直到加工出合格的产品,加速了工厂产品质量的提高。
可以预计,三坐标测量机在未来的汽车生产制造过程中起的作用会越来越明显。
4、三维坐标测量仪怎么用
不知道您指的是哪种?是三坐标测量机还是三维扫描仪,一种用于尺寸测量一种做逆向抄数。
5、三维坐标系中如何确定坐标?
确定坐标之前,需要建立三维坐标系,常用直角坐标系(x,y,z),也可以使用球极坐标系,类似地球经纬度高程那样的。目前普遍用来确定坐标的有三种:
1、三维笛卡尔坐标,三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值。同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值。
2、圆柱坐标,圆柱坐标与二维极坐标类似,但增加了从所要确定的点到XY平面的距离值。即三维点的圆柱坐标可通过该点与UCS原点连线在XY平面上的投影长度,该投影与X轴夹角、以及该点垂直于XY平面的Z值来确定。
3.球面坐标,球面坐标也类似与二维极坐标。在确定某点时,应分别指定该点与当前坐标系原点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。

(5)汽车配件三维坐标怎么测量扩展资料:
三维坐标系中注意事项:
1、在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
2、在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z)向量的坐标表示
3、使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。
参考资料来源:网络-三维坐标系
6、什么叫三维坐标测量,三维坐标测量原理是什么?
这种机器叫三坐标测量机,有关节臂的有龙门式的,就是在你产品上用探针接触测量,获得三维数据,这种方式是精度最高的,如果精度要求比这个稍微低点,那白光或者激光三维扫描仪是首选
7、三维测量技术的方法及应用
光学主动式三维测量
目前,主动式光学三维测量测量技术已广泛用于工业检测、反求工程、生物医学、机器视觉等领域。例如,复杂的叶轮和叶片的面形检测,汽车车身的检测,人类口腔牙型测量,整形外科效果评价,用于制鞋CAD的鞋楦三维数据采集,各种实物模型的三维信息记录与仿形等。三维高速度、高精度测量技术将随着测量方法的完善和信息获取与处理技术的改进而进一步发展,在新的更加广阔的研究和应用领域中发挥重要作用。
主动式光学非接触测量技术大体上可分为飞行时间法、主动三角法、莫尔轮廓术、投影结构光法、自动聚焦法、离焦法、全息干涉测量法、相移测量法等。以下对几种主要的方法进行以下简单介绍。
3.2.1.飞行时间法
飞行时间法是基于三维面形对结构光束产生的时间调制,一般采用激光,通过测量光波的飞行时间来获得距离信息,结合附加的扫描装置使光脉冲扫描整个待测对象就可以得到三维数据。飞行时间法以对信号检测的时间分辨率来换取距离测量精度,要得到高的测量精度,测量系统必须要有极高的时间分辨率,常用于大尺度远距离的测量。
3.2.2.干涉法
干涉测量是将一束相干光通过分光系统分成测量光和参考光,利用测量光波与参考光波的相干叠加来确定两束光之间的相位差,从而获得物体表面的深度信息。这种方法测量精度高,但测量范围受到光波波长的限制,只能测量微观表面的形貌和微小位移,不适于大尺度物体的检测。
3.2.3.主动三角法
光学三角法是最常用的一种光学三维测量技术,以传统的三角测量为基础,通过待测点相对于光学基准线偏移产生的角度变化计算该点的深度信息。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和基于结构光的主动三角法。双目视觉是典型的被动三维测量技术,它的优点在于其适应性强,可以在多种条件下灵活地测量物体的立体信息,缺点是需要大量的相关匹配运算以及较为复杂的空间几何参数的校准等问题,测量精度低,计算量较大,不适于精密计量,常用于三维目标的识别、理解以及位形分析等场合,在航空领域应用较多。主动三维测量技术根据三维面形对于结构光场的调制方式不同,可分为时间调制和空间调制两大类。飞行时间法是典型的时间调制方法,激光逐点扫描法、光切法和光栅投射法是典型的空间调制方法。
3.2.4.相移测量法
相移测量法是一种重要的三维测量方法,它采用正弦光栅投影和相移技术,投影在物体上的光栅,根据物体的高度而产生变形,变形的光栅图像叫做条纹图,它包含了三维信息。
相移法是一种在时间轴上的逐点运算,不会造成全面影响,计算量少。另外,这种方法具有一定抗静态噪声的能力。缺点是不能消除条纹中高频噪声引起的误差。在传统相移系统中,精确移动光栅的需要增加了系统的复杂性。而在数字相移系统中,用软件控制精确地实现相位移动。某些应用场合不允许测量多幅图像,但只要没有以上限制,相移法仍然是首选方案。
8、三维测量一般方式有哪些?
据中国仪器超市网站介绍说三维检测是集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形和结构进行扫描,以获得物体表面的空间坐标。它的重要意义在于能够将实物的立体信息转换为计算机能直接处理的数字信号,为实物数字化提供了相当方便快捷的手段。常见的三维物体形状检测方法可以分为接触式和非接触式两大类,而检测系统与物体的作用不外乎光、声、机、电等方式。三维测量的优势:直接获取观测点三维绝对位置,不需要通视,有利于在施工现场的测量控制;实时计算并显示三维位移;不受天气影响,可全天候、24小时连续进行高采样率(10Hz)观测;对原有测量控制系统进行独立检核。

9、怎样学三坐标测量?
三坐标测量仪集机械、计算机、控制系统为一体,操作员都需要专业的培训才能学会上机操作,且挑选学习三坐标的人,还有简单的条件要求:
1、熟练操作计算机电脑。三坐标测量软件是三坐标系统中非常重要的组成部分,如果完全不懂得操作计算机,根本不可能学会三坐标。
2、有一定的数学功底。坐标系和点的坐标值,是测量取点中基础知识。所以需要有一定的空间几何的数学基础,懂得三维空间中坐标系意义。
3、会看图纸。测量时,需要根据工件实际情况找基准,知道自己需要测量什么,如何进行测量。在三坐标软件中,所有的点和元素,都是以三维图形的方式显示出来,有时还需导 入CAD数模进行脱机编程和测量。所以说图纸方面的知识,也是一个学习条件。

三坐标测量的应用范围:
三坐标检测已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的测量设备。涉及的部门和行业非常广泛。
在应用范围里面,三坐标检测也基本上涵盖了机械零件及电子元器件和各种形状公差和位置公差。利用三坐标检测手段能更好的判断工件的实际要素与理想要素之间的误差。
以上内容参考 网络-三坐标测量