导航:首页 > 电动新能源 > 电动汽车半导体制冷

电动汽车半导体制冷

发布时间:2021-01-24 05:47:20

1、车载半导体空调制作详细方法最好配图

可以吹冷风的,就是不知道屋子能不能制冷,材料25408制冷片10片12v48a电源两台水冷头20个温控器1个,大冷凝器1个小冷凝器1个自吸泵2个,硅管2米保温皮2米。

2、车载空调电动半导体制冷的效果怎么样?

效果不会太好。
半导体制冷的制冷能力要么特别小要么需要很高的成本,且工作效率较低。
半导体制冷一般应用在一些微型制冷器具上面,很少拿来制作空调。

3、新能源汽车的空调制冷剂系统跟普通车一样吗?

汽油车开启空调后,百公里的油耗会增加1-2L,在怠速情况下开空调的油耗为1-2L/h;而电动汽车的是电池组分别对空调系统和动力系统供电,并不会增加电动机的负担,无论以任何速度行驶,空调每小时的耗电量都是1.62kwh。同样在静止情况下开空调1小时,电动汽车比汽油车省5-10元左右。

空调,费电是不争的事实。这里咱们得跟实际生活联系起来,带入到实际情境中更有意义:如果上下班来回总路程是50km,按照北京这路况,基本得开2个小时左右,这期间咱们使用空调的时间起码1个小时,这就要求电动车主每天得为空调富余出4%左右的电量,即10公里以上的续航里程,占到了总路程的20%!这意味着原本满电能开5-6天的电动车,使用空调的话就只能开4-5天了!我们还是建议电动车主合理使用空调,尤其是续航衰减明显的冬天!

电动汽车空调耗电吗:制冷系统

半导体制冷又称为热电制冷,是固态制冷技术,它不用制冷剂,没有运行件。其热电堆起着压缩式制冷压缩机的作用,冷端及其热交换器则相当于压缩式制冷蒸发器,而热端及其热交换器相当于冷凝器。通电时自由电子和空穴在外电场的作用下,离开热电堆的冷端向热端移动,相当于制冷剂在压缩机中的压缩过程。在电热堆的冷端,通过热交换器的吸热,同时产生电子-空穴对,相当于制冷剂在蒸发器内的吸热和蒸发。在电热堆的热端,发生电子-空穴对的复合,同时通过热交换器散热,相当于制冷剂在冷凝器中的发热和凝结。

热电空气调节具有以下特点:热电元件工作需要直流电源;改变电流方向即可产生制冷、制热的逆效果;热电制冷片热惯性非常小,制冷时间很短,在热端散热良好、冷端空载的情况下,通电不到1min,制冷片就能达到最大温差;调节组件工作电流的大小即可调节制冷速度和温度,温度控制精度可达0.001℃,并且容易实现能量的连续调节;在正确设计和应用条件下,其制冷效率可达90%以上,而制热效率远大于1;体积小、重量轻、结构紧凑,有利于减小电动汽车的整备质量;可靠性高、寿命长并且维护方便;没有转动部件,因此无振动、无摩擦、无噪声且耐冲击。

电动汽车空调耗电吗:暖风系统

燃油汽车空调系统的暖风热源主要由发动机冷却液提供,而电动汽车的暖风系统与之不同。电动汽车空调系统暖风常见的方案如下:

①热泵。由传动带驱动的直流无刷电动机的电动汽车热泵式空调系统工作原理如图所示。空调系统的制冷/制热模式由四通换向阀转换,实线箭头表示制冷工况,虚线箭头表示制热工况。从原理上讲,该系统与普通的热泵空调并无区别,但是用于电动汽车上,其专门开发了双工作腔滑片压缩机、直流无刷电动机和逆变器控制系统。在热泵工况下,系统从融霜模式转为制热模式时,风道内换热器上的冷凝水将迅速蒸发,在风窗玻璃上结霜,影响驾驶的安全性。

②PTC电加热器。PTC电加热器是采用PTC热敏电阻元件为发热源的一种加热器。PTC热敏电阻通常是用半导体材料制成的,它的电阻随湿度变化而急剧变化,当外界温度降低,PTC电阻值随之减小,发热量反而会相应增加。按材质可以分为陶瓷PTC热敏电阻和有机高分子PTC热敏电阻。用于空调辅助电加热器的是陶瓷PTC热敏电阻。PTC热敏电阻元件因具有随环境温度高低的变化,其电阻值随之增加或减小的变化特性,所以PTC加热器具有节能、恒温、安全和使用寿命长等特点。

4、这个半导体怎么实现制冷?如题 谢谢了

我们知道,传统的风冷散热系统是不可能把显示芯片的温度降到环境温度以下的,因为 当两者的温度几乎相等的时候会很快达到热平衡, 此时便根本无法继续降温, 顶多也只能接 近环境温度。 而半导体制冷却可以打破常规, 能够强行将显示芯片的温度降到比环境温度还 低。而它实现的原理,就是强行打破热平衡,实现温差效果。那么,这种温差效果又是如何 实现的呢? 首先我们需要明确一些基本概念。 1.帕尔贴效应:1834 年,法国科学家帕尔贴发现了热电致冷和致热现象,即金属温差 电逆效应。由两种不同金属组成一对热电偶,当热电偶输入直流电流后,因直流电通入的方 向不同,将在电偶结点处产生吸热和放热现象,称这种现象为帕尔贴效应。帕尔贴效应早在 20O 年之前发现,但是用到致冷还是近几十年的事。 2.N 型半导体:任何物质都是由原子组成,原子是由原子核和电子组成。电子以高速度绕原 子核转动,受到原子核吸引,因为受到一定的限制,所以电子只能在有限的轨道上运转,不 能任意离开, 而各层轨道上的电子具有不同的能量(电子势能)。 离原子核最远轨道上的电子, 经常可以脱离原子核吸引,而在原子之间运动,叫导体。如果电子不能脱离轨道形成自由电 子,故不能参加导电,叫绝缘体。半导体导电能力介于导体与绝缘体之间,叫半导体。半导 体重要的特性是在一定数量的某种杂质渗入半导体之后, 不但能大大加大导电能力, 而且可 以根据掺入杂质的种类和数量制造出不同性质、 不同用途的半导体。 将一种杂质掺入半导体 后,会放出自由电子,这种半导体称为 N 型半导体。 3.P 型半导体:是靠“空穴”来导电。在外电场作用下“空穴”流动方向和电子流动方向相反, 即“空穴”由正板流向负极,这是 P 型半导体原理。 4.载流子现象:N 型半导体中的自由电子,P 型半导体中的“空穴”,他们都是参与导电,统 称为“载流子”,它是半导体所特有,是由于掺入杂质的结果。 5.半导体致冷材料:是对特殊半导体材料,通过掺入的杂质改变其温差电动势率、导电 率和热导率,使其满足致冷需要的材料。温差电致冷组件就是由这种特殊的 N 型和 P 型半 导体制成的。 在明确了这些基本概念后,我们现在就来揭示温差制冷的原理。 1.半导体致冷原理: 如图把一只 N 型半导体元件和一只 P 型半导体元件联结成热电偶, 接上直流电源后,在接头处就会产生温差和热量的转移。在上面的一个接头处,电流方向是 n→p,温度下降并且吸热,这就是冷端。而下面的一个接头处,电流方向是 p→n,温度上 升并且放热,因此是热端。 2.温差电致冷组件致冷原理:如上图把若干对半导体热电偶在电路上串联起来,而在传 热方面则是并联的,这就构成了一个常见的致冷热电堆。按图示接上直流电源后,这个热电 堆的上面是冷端,下面是热端。借助热交换器等手段,使热电堆的热端不断散热并且保持一 定的温度, 把热电堆的冷端放到工作环境中去吸热降温, 这就是温差电致冷组件的工作原理。 半导体散热片侧视图 半导体制冷片的应用原理 1.半导体制冷的实际应用是如何进行的? 利用半导体制冷片的制冷原理,半导体制冷片的冷端与显示芯片接触,热端则与散热器 接触。接通电源后,冷热端出现温差,热量不断地通过晶格能的传递,从冷端移送到热端, 只要热端的热量能有效的散发掉, 则冷端就不断的被冷却, 使得制冷片的散热效果出奇的好。 实践证明,冷热端的正常温差大概在 45——60 度之间,其强度非常惊人。实际使用中,可 以把显示芯片的温度一举降到零下 10 度。 2.半导体制冷为什么还要配合使用散热器? 我们看到, 在半导体制冷片的热端, ZENO96 仍然配置了超大的散热片和高效能的 EMI 磁悬浮散热风扇。这是因为,只有半导体制冷片热端的热量被持续源源不断的散发出去,才 能使冷端不断冷却而始终保持良好的制冷效果,显示芯片才能保持在一个相对的恒温状态。 另外,半导体制冷片本身也有一定的正常工作温度,一般来说其极限温度大概在 100 度左 右,如果半导体制冷片没有良好的散热而超出了热度承受极限,就会烧毁损坏。所以,半导 体制冷片的热端一定要加装散热系统,保持良好的散热效果。 关于磁浮风扇,这里有必要作一点说明。磁浮风扇(全称为磁浮马达风扇)的工作原理 是: 轴芯与轴承运作时无摩擦, 轴芯仅与空气摩擦, 彻底解决小空间高积温产品之散热困扰。 藉由磁浮设计,马达运转时,转子受磁轨道吸引,在轴芯与轴承内壁保持一定距离的悬空运 转,不会接触到轴承,故可避免传统马达之轴承被磨损成不规则椭圆而产生噪音的缺点,实 际运行中,此款风扇的噪音小于 26dB,非常安静。同时,没有磨损就不会有不稳定的运转 及噪音,可使产品寿命大幅提升,捷波官方声称此款散热系统的寿命可达 3 万工作小时。 另外磁浮风扇还可以耐高温,最高可耐 90℃高温。 3.为什么要配置外接电源接口? 与一般的风冷散热相比,半导体制冷片的功率要大得多,一般可以达到 36W 到 40W, 也就是说,至少需要 12V 3A 的电源供应。所以,外接电源是必须的。而目前的主流 300W 电源,12V 电源组可以输出 10A 左右电流,如果不是配置非常 BT 的电脑系统,一般分配 给半导体制冷片 12V 3A 的电源供电能力基本足够。当然,如果是 5V 电压标准,则可以提 供高达 20A 的电流输出,分配给半导体制冷片绰绰有余。 4.什么是结露现象?如何预防? 结露现象是半导体制冷的致命杀手。 功率较大的半导体制冷片在湿度较高的环境下如果 冷端温度过低,空气中的水蒸气就会在其表面凝结成为水滴,出现结露现象。如果水滴流到 主板或是显示芯片,后果不堪设想。所以,这是最应该引起重视的问题。 从图中我们看到, ZENO 96 采用设计严密的防冷凝绝缘绝热垫来防止结露现象的发生。 半导体制冷片的周围被两层绝缘绝热垫厚厚地严密封锁起来, 可以最大程度的保障芯片的安 全。 实际使用中我们完全不必担心结露问题的发生, 这一点捷波处理的非常出色, 也很周到。

5、请教电器专家半导体冷热饮水机的制冷方法,还有制冷方法用12伏电可以吗。

半导体制冷片(TE)也叫热电制冷片,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无制冷剂污染的场合。
半导体制冷片的工作运转是用直流电流,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理,以下的图就是一个单片的制冷片,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连结组成
半导体制冷片的工作原理是:当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。
1、 塞贝克效应(SEEBECK EFFECT)
一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势: ES=S.△T
式中:ES为温差电动势
S(?)为温差电动势率(塞贝克系数)
△T为接点之间的温差
2、 珀尔帖效应(PELTIER EFFECT)
一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。
Qл=л.I л=aTc
式中:Q 为放热或吸热功率
为比例系数,称为珀尔帖系数
I为工作电流
a为温差电动势率
Tc为冷接点温度
3、 汤姆逊效应 (THOMSON EFFECT)
当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T的导体两点之间,其放热量或吸热量为:
Q = .I.△T
Q 为放热或吸热功率
 为汤姆逊系数
I为工作电流
△T为温度梯度
以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。
约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。
中国在半导体制冷技术开始于50年代末60年代初,当时在国际上也是比较早的研究单位之一,60年代中期,半导体材料的性能达到了国际水平,60年代末至80年代初是我国半导体制冷片技术发展的一个台阶。在此期间,一方面半导体制冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体制冷片,因而才有了现在的半导体制冷片的生产及其两次产品的开发和应用。
制冷片的技术应用
半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点:
1、 不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。
2、 半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。
3、 半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
4、 半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。
5、 半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。
6、 半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。
7、 半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。
通过以上分析,半导体温差电片件应用范围有:制冷、加热、发电,制冷和加热应用比较普遍,有以下几个方面:
1、 军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。
2、 医疗方面;冷力、冷合、白内障摘除片、血液分析仪等。
3、 实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪片。
4、 专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。
5、 日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。此外,还有其它方面的应用,这里就不一一提了。 半导体制冷片额定电压为:12v, 额定电流为4.5A,大概是50--60W,最大温差可达60摄氏度,外型尺寸为4 X 4 X 0.4cm,重约25克。它的工作特点是一面制冷而一面发热。

6、半导体致冷片(制冷片)原理是什么?

在原理上,半导体的制冷片只能算是一个热传递的工具,虽然制冷片会主动为芯片散热,但依然要将热端的高于芯片的发热量散发掉。在制冷片工作期间,只要冷热端出现温差,热量便不断地通过晶格的传递,将热量移动到热端并通过散热设备散发出去。因此,制冷片对于芯片来说是主动制冷的装置,而对于整个系统来说,只能算是主动的导热装置,因此,采用半导体制冷装置的ZENO96智冷版,依然要采取主动散热的方式对制冷片的热端进行降温。 风扇以及散热片的作用主要是为制冷片的热端散热,通常热端的温度在没有散热装置的时候会达到100度左右,极易超过制冷片的承受极限,而且半导体制冷效率的关键就是要尽快降低热端温度以增大两端温差,提高制冷效果,因此在热端采用大型的散热片以及主动的散热风扇将有助于散热系统的优良工作。在正常使用情况下,冷热端的温差将保持在40~65度之间。 当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。
1、塞贝克效应
(SEEBECKEFFECT) 一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势:ES=S.△T 式中:ES为温差电动势 S为温差电动势率(塞贝克系数) △T为接点之间的温差
2、珀尔帖效应
(PELTIEREFFECT) 一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。 Qл=л.Iл=aTc 式中:Qπ为放热或吸热功率 π为比例系数,称为珀尔帖系数 I为工作电流 a为温差电动势率 Tc为冷接点温度
3、汤姆逊效应
(THOMSONEFFECT) 当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T的导体两点之间,其放热量或吸热量为: Qτ=τ.I.△T Qτ为放热或吸热功率 τ为汤姆逊系数 I为工作电流 △T为温度梯度 以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。 约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。 中国在半导体制冷技术开始于50年代末60年代初,当时在国际上也是比较早的研究单位之一,60年代中期,半导体材料的性能达到了国际水平,60年代末至80年代初是我国半导体制冷片技术发展的一个台阶。在此期间,一方面半导体制冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体制冷片,因而才有了现在的半导体制冷片的生产及其两次产品的开发和应用。

以上内容来自http://.baidu.com/question/169411393.html

7、车载冰箱是半导体制冷一般可以达到多少度?夏天用来在家存放肉(大概10小时)行不行?

车载冰箱就是制指可以在汽车上携带的冷藏柜

车载冰箱是家用冰箱的延续,可以采用半导体电子制冷技术,也可以通过压缩机制冷。一般噪音小污染少。在行车中只需将电源插头插入点烟孔,即可给冰箱降温。

市场上主要有两种车载冰箱,一种是 半导体车载冰箱,这种冰箱的优点是既能制冷又能制热,环保、无污染,体积小,成本较低,工作时没有震动、噪音、寿命长。缺点是制冷效率不高,制冷温度受环境温度影响,制冷无法达到零度以下,且容量较小。另一种是压缩机车载冰箱,压缩机是传统冰箱的传统技术,制冷温度低,为-18度10度。制冷效率高,能制冰、保鲜,体积大,是未来车载冰箱发展的主流方向。但是这种冰箱重量较重,携带不方便,价格较高

8、我想组装电动三轮车用半导体制冷空调,哪里卖零件

淘宝上,万能的淘宝啥都有

9、新能源汽车空调和传统汽车空调的制冷剂区别?

传统汽车空调制冷系统所使用的冷媒是R134a,

新能源汽车空调使用的是半导体制冷又称版为热电制冷,是固态制冷技术权,它不用制冷剂,没有运行件。其热电堆起着压缩式制冷压缩机的作用,冷端及其热交换器则相当于压缩式制冷蒸发器,而热端及其热交换器相当于冷凝器。通电时自由电子和空穴在外电场的作用下,离开热电堆的冷端向热端移动,相当于制冷剂在压缩机中的压缩过程。在电热堆的冷端,通过热交换器的吸热,同时产生电子-空穴对,相当于制冷剂在蒸发器内的吸热和蒸发。在电热堆的热端,发生电子-空穴对的复合,同时通过热交换器散热,相当于制冷剂在冷凝器中的发热和凝结

 希望对你有所帮助,望采纳!!!


与电动汽车半导体制冷相关的内容