1、需要电动汽车的电动机工况图,包括功率和扭矩的
这是典型的电机外特性曲线。
电机开始段是恒转矩区,到基速点后,为恒功率区间。
另外,与内燃机不同的是,在散热系统和供电系统能保障的情况下,
他可以有短时间的爆发力,称之为峰值特性,一般在30秒到60秒上下。
2、我急需一个纯电动汽车的电机选配表!表格形式的!急用!!毕业设计选电机用!
基本参数
额 定 功 率: 6.3kw 定 额: 60min
额 定 电 压: 72V 励 磁 方 式: 串励
额 定 电 流: 105A 绝 缘 等 级: F
额 定 转 速: 2000r/min 最 高 转 速: 3800r/min
防 护 等 级: IP44 执 行 标 准: JB5335-91
适 用 范 围: 电动汽车
3、毕业设计要做一个电动汽车车载充电机,有大神可以指点一下吗
目前电动车充电机行业内较多在做的是非车载的,汽车上只要保留蓄电池和充电接口以及通讯接口就行,通过外部高压,一般是400V充电系统来充电。一般由电力电源或者通信电源的制造商在转型做,要求模块化,热插拔,功率高,谐波含量少,一般都做成三相电源。较多采用有源三相功率因数校正加上DC/DC变换器来控制输出电压,难点在功率拓扑和控制方式上,并且充电机安全要高于传统工业领域,对可靠性和安规方面要求较高。
4、求一个电动汽车电动机驱动系统的CAD图
哪种电动机?交流异步电机还是他励直流电机或者是最新的永磁同步电机?
5、电动汽车采用哪种驱动电机好
1、开关磁阻电机与异步电机比较,要在节能变频的场合下比较,在都需要变频驱动的情况下,开关磁阻电机秒杀异步电机,特别是满载、过载启动,异步电机就等烧机吧。
2、开关磁阻电机与永磁电机比较,要在大功率的情况下比较,永磁电机成本要贵30%至40%,永磁电机适合做3KW以下的伺服,国内用来做电动汽车那是在可以骗补贴和装逼的情况下适用。
3、转矩脉动是世界性难题,所有电机都有,开关磁阻电机转矩脉动最差,开关磁阻电机转矩脉动主要与电机有关,具体与什么有关,没有人会告诉你,因为这是技术秘密。电控国内与国外都已成熟,但国内与国外有差距,所以国外有成熟的应用,开关磁阻电机属于最新的电机技术,不会那么快进入国内,因为国内主要工业精神是仿造。做这一行的应该知道,德国那个破壁机电机,已在祖国的大江南北被无数次拆解仿造。
4、功率密度、效率不是开关磁阻电机的问题,开关磁阻电机的问题是转矩脉动,记住是转矩脉动。如果你还停留在看论文找答案,你还是初级水平,不等到开关磁阻电机成熟那天,你永远不会知道答案。
5、稀土、永磁电机、电动汽车、国防资源,这些利害关系,不作说明,留给大家好好研究。
6、电动汽车电机的发展趋势
电机驱动系统
从20世纪80年代开关磁阻电机驱动系统问世后,打破了传统的电机设计理论和正弦波电压源供电方式;并随着磁阻电机,永磁电机、电力电子技术和计算机技术的发展,交流电机驱动系统设计进入一个新的黄金时代;新的电机拓朴结构与控制方式层出不究,推出了新一代机电一体化电机驱动系统迅猛发展。高密度、高效率、轻量化、低成本、宽调速牵引电机驱动系统已成为各国研究和开发的主要热点之一。
SRD开关磁阻电机驱动系统的主要特点是电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大、噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器增加了结构复杂性、降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。
永磁式开关磁阻电机也称为双凸极永磁电机,永磁式开关磁阻电机可采用圆柱形径向磁场结构、盘式轴向磁场结构和环形横向磁场结构。该电机在磁阻转矩的基础上迭加了永磁转矩,永磁转矩的存在有助于提高电机的功率密度和减小转矩脉动,以利于它在电动车辆驱动系统中应用。
转子磁极分割型混合励磁结构同步电机这一概念一提出就引起国际电工界和各大汽车公司研发中心的极大关注。转子磁极分割型混合励磁结构同步电机具有磁场控制能力,类似直流电机的低速助磁控制和高速弱磁控制,符合电动车辆牵引电机低速大力矩和恒功率宽调速的需求。该电机的研究处于探索阶段,电机的机理和设计理论有待于进一步深入研究与完善,作为电动车辆牵引电机具有较强的潜在的竞争优势。
此外,正在研发的热点课题还有:
具有磁场控制能力的永磁同步电机驱动系统;
车轮电机驱动系统;
动力传动一体化部件(电机、减速齿轮、传动轴);
双馈电异步电机驱动系统和双馈电永磁同步电机驱动系统。
电子伺服系统
1993年美国能源部、商务部、贸易部、国防部、环保局、宇航局、国家科学基金会七个政府部门下美国三个最大的汽车制造公司,克莱斯勒、福特和通用,建立了新一代车辆伙伴关系(PNGV,Partnership for a New Generation of Vehicles),目标是开发新一代机动车技术,以增强美国汽车工业的实力。1998年至2002年期间,美国国家自然科学基金(NSF)资助美国国家电力电子中心(由美国Virginia和美国Wisconsin等四所大学组建)研发车辆电子动力驱动系统、电子伺服控制系统和各种车辆专用IC模块,提高汽车电子电气部件的可靠性,降低其成本和抢占车辆电气自动化技术的制高点,增强在国际市场的竞争力。线控的汽车电子伺服系统(X-by-wire)在未来将是十分重要的技术,该技术可将各种独立的系统(如转向、制动、悬挂等)集成到一起由计算机调控,使汽车的操纵性、安全性以及汽车的总体结构大大改善,设计的灵活度也大大增加。电子动力方向盘和线控刹车已经在一些欧洲车型上被采用,在这个系统中已经削减了相当多的机械部件,如液压泵等。汽车电子伺服技术是具有革命性的技术,随着这个技术的使用,许多传统的机械部件将会在未来的汽车上消失,而越来越多的车用伺服电机将出现在未来的汽车上。