导航:首页 > 电动新能源 > 电动汽车电路布置

电动汽车电路布置

发布时间:2020-08-12 05:10:18

1、电动车线路图解

电动车线路图解:

电动自行车电路图只说明组成电动自行车电路的各个电气设备的工作原理,如电流走向、流过电器装置的顺序等,图上的导线只说明各电气设备及其间的相互联系,而不代表实际安装位置。

电动自行车电路图中电气装置的布置顺序为从左到右、从上到下:供电电源(蓄电池)在左,用电设备在右;各局部电路尽量画在一起;“火线”在上,搭铁线在下;在局部电路的原理图中,信号输入(或控制端)在左,信号输出端(或驱动端)在右:“火线”在上,搭铁线在下。

(1)电动汽车电路布置扩展资料:

识读电动自行车电路图应注意的问题

( 1) 认真读几遍图注在阅读电路图时,必须认真阅读图注。这样可以大致了解电路的组成及特点。

( 2) 先易后难

有些电动自行车电路图的某些局部电路,或局部电路中的某些部分可能比较复杂,一时难以读懂,可以暂时放一放,待其他局部电路看懂后,再结合与该电路有关的信息,进一步识读这部分电路。

( 3) 熟悉电动自行车电路图形符号

电动自行车电路图是利用电路图形符号来表示其构成和工作原理的。因此,必须熟悉电路图形符号的含义,才能看懂电路图。

( 4) 了解电气装置在电路图中的布置

在电气系统中,有大量电气装置是机电合一的,如各种继电器,这些电器装置在电路图上表示时,为做到使画面既简单,又便于识图,大多采用“集中表示法”或“分开表示法”来反映电路的连接情况。

( 5) 了解开关、继电器的初始状态

在电路图中,各种开关、继电器都是按初始位置画出的,如按钮未按下,开关未接通,继电器线圈未通电,其触点未闭合(常开触点)或未打开(常闭触点),这种状态称为原始状态。但看图时,不能完全按原始状态分析,否则很难理解电路所表达的工作原理。

2、纯电动汽车驱动布置方式有哪些,请简要说明其特点?

集中驱动式(前驱)示意图


集中驱动式(后驱)示意图

分散能独立式示意图

纯电动汽车驱动布置主要有两种形式:1.集中驱动2.分散独立驱动,由上图可以看出,两种形式的主要区别在于驱动电机的位置及个数。

集中驱动式结构简单紧凑,适合量产

分散独立驱动式结构相对复杂,优点是可以独立控制、实现车轮独立运转  

3、电动汽车的动力电路及配件

动力电池及其管理系统(BMS)
电机及电机控制器(MCU)
DC/DC变换器

4、电动汽车能不能进行电路改装?改装需要注意什么?

改装这一词对于使用车辆的而言都不陌生,改装可以按照自己的想法和意愿来对于车辆进行对应的改装,来满足用车的需求性,随着电动汽车保有量的增加,购买电动汽车的人也是越来越多,当需要某些功能的时候,能不能对于电动汽车进行电路改装?
从电动汽车饿的构造上面去进行分析,电动汽车不建议进行电路改装,电动汽车的电路作为车辆的核心部件关乎着车辆的用车安全,而电动汽车的电路并不像普通的燃油车一样,采用的是电压,对于电动汽车而言,涉及到电路内部的高压电路,一经改装会影响到整个电路的使用情况,同时在改装的时候也会影响到电动汽车电路内部的,高低压线路密封的问题,如果在不熟悉电路的情况下面,贸然的对电动汽车电路改装是会存在巨大的安全风险。都非常容易留下安全隐患,会导致汽车线路漏电或短路。
从改装的专业角度上面去分析,电动汽车的技术并不公开透明,一些人员在车辆的电路改装技术上面也会存在一些差异,同时没有统一标准,也使得电路改装以后产生一些附带的问题如电动汽车电路上面的接线端子在包裹不严密的情况下面产生一定的损伤。一些新增的装置可能会干扰各个独立的控制模块工作,从而影响整个系统的正常工作。
总的去看,电动汽车采用的是高压电气设备,在车辆的改装具有一定的安全风险,需要严谨合理的线路设计。同时也需要一定的专业知识来做铺垫,涉及到的原理、知识很多,贸然改造会引发自燃等问题出现。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

5、特斯拉电动汽车驱动系统布置形式有哪些

特斯拉公司目前主推的 Model S 属于豪华类型,售价在 7 万-10 万美元之间,但是其续航里程可以达到 265 英里,远超目前市面上所有的电动汽车(比如尼桑的 Leaf 电动车的续航只有 75 英里)。据了解,特斯拉公司计划在数年之内向市场提供售价在 3-3.5 万美元之间的电动汽车,但是性能并不缩水,续航里程将与 Model S 豪华车接近。为了让电动汽车更实用,特斯拉公司将要在美国全境建立起快速充电站网络,所有特斯拉的电动汽车可以在快速充电站用半小时充满可以行驶 200 英里的电力(从下文你可以知道,特斯拉已经具备了这样的实力)。我的试驾行程:从加州的帕洛阿尔托行驶到旧金山,然后又在高速上开到了圣克鲁兹,之后去了特斯拉生产车间,最后返回了帕洛阿尔托的特斯拉公司总部,行驶总里程约为 230 英里。当我在帕洛阿尔托提车时发现这辆车的电池并没有充满,可能是工作人员昨天晚上没有充电,汽车的控制面板上显示着汽车的电池可以供应行驶 208 英里(充满电可以行驶 265 英里)。如果我想完成上面的行程,就必须在快速充电站停一次。当前的电动汽车相比燃油汽车有许多优点:对于上班族来说,不再需要开车去加油站排队加油,只需要回家花十来块钱充电就行了

6、电动汽车电路图

欧瑞斯电动车一直致力于绿色环保科技领域的创新,采用国际新能源电动制造技术,在多家科研院所专家的协同指导下,按照国际汽车标准,设计、制造出了最为先进的多用途电动车辆。欧瑞斯电动车是国内最先采用三维UG软件设计的多用途电动车辆,结合一流的车型设计师的设计理念,采用先进完善的检测和试验设备,全方位个性化服务卓越。欧瑞斯电动车凭借其较好的载重、爬坡能力,同时兼顾环保无污染、充电便利、广泛适用于大型公园、风景区、社区、别墅区、度假村、花园式酒店、城市步行街等场所。目前,欧瑞斯电动车已申报多项国家专利

7、电动车的全车电路原理

智能型和智能双控型电动自行车从原理上看基本相同。它们都是由车体部件、电池、传动部件、微电脑控制器和测力测速传感部件(俗称力矩传感器)组成。智能骑行时,人的脚踏力由传感部件测量出来,经过微电脑处理,电机输出相应的功率,使人的骑行十分省力。人的脚踏力越大,电机输出的功率即电助力也越大,相反亦然。

智能骑行的最大优点是安全、省电和使用方便。骑智能型电动自行车和骑普通自行车完全一样,但由于有电助力,骑行更轻松、省力。欧、美的大部分国家和日本都需要智能型电动自行车。其中,日本只许智能型电动自行车上路,并对智能型电动自行车的要求制定了很严格规定。具体有:

1) 在任何路况情况下,速度小于15km/h时,人力∶电助力≥1,即电助力不允许大于人力,但电助力可接近于人力。
2) 在任何路况情况下,速度大于15km/h 时,速度每增加1km/h,电助力下降1/9。
3) 速度≤24km/h时,整车电助动系统关闭。
4) 人力蹬踏开始后1秒钟之内,电助动系统按上述开始要求工作;人力蹬踏停止后1秒钟之内,整车电助动系统关闭。
5) 为了节约电能,智能型电助动自行车停止运行一定时间(一般为3-5分钟)后,整车处于休眠状态。
6) 必须保证骑行的连续性,电助力不能有断断续续的现象。

要实现上列要求的智能骑行,智能型电助动自行车必须具有力矩传感器和微电脑控制器。

智能双控型电动自行车是既可智能骑行、也可手控行驶的一种新的车种。它和智能型电助动自行车一样,也需要有力矩传感器和微电脑控制器。智能骑行时和纯智能型电助动自行车一样,手控行驶时和纯电动型电动自行车一样。它和智能车不同之处仅在于微电脑控制器的软硬件略有不同。智能双控型电动自行车是十分适合中国国情和目前电池不完全过关条件下使用的产品。纯电动和纯智能行驶,人都会有疲劳感,交替使用则很轻松;启动、上坡、顶风和加速时智能行驶,减少了大电流使用状况,十分省电,这样既可延长电池寿命,又可增加续驶里程;路况较好、人流稀少时,手控行驶;路况较差、人流稠密时智能骑行,十分安全。智能双控这种控制和使用模式如果设计得当,实现智能和手控之间的无间隙切换,使用十分方便。在中国的大中城市里如果使用这种电动自行车车种,是既安全、又省电的好产品。

智能型电动自行车和智能双控型电动自行车的核心部件是力矩传感部件和微电脑控制器。微电脑控制器的软硬件设计不在本文范围之内,下面介绍力矩传感器的有关原理和一些结构。

力矩传感器是智能型和智能双控型电动自行车中的测力装置,它的作用是测量人的脚踏力。因此它的安装位置一定要和人的脚踏力相联系。在自行车中,那些地方和人的脚踏力相联系呢?

力矩传感器的安装位置和有关方案。

A、脚蹬:脚蹬式力矩传感器。

在脚蹬上安装压力传感器,人力施加在脚蹬上,压力传感器即可输出随人力大小而变化的电压信号,通过一套碳刷机构传到微电脑控制器,实现人力、电助力的比例输出。
优点:结构简单,便宜;
缺点:传输路线长,不可靠因素多,不宜采用。

B、曲柄:曲柄式力矩传感器。

在曲柄上安装应变片,人力蹬踏时,曲柄产生微变形,应变片输出相应的电压信号。输出信号的大小随人力大小而变化。将输出信号传到微电脑控制器,实现人力、电助力的比例输出。
优缺点同上,不可取。

C、链轮盘:链轮式力矩传感器。

把链轮盘设计成主、从动双链轮。主动轮与曲柄固定在一起,从动轮带动链条。主、从动轮之间用弹簧连接。人力蹬踏时,主动轮通过弹簧带动从动轮运动。这时主、从轮之间将产生角位移。测量出这个角位移,通过微电脑控制器处理角位移信号,进而实现人力、电助力之间的的比例输出。这个方案是一个完全实用、可行的方案。

D、中轴:中轴式力矩传感器。

中轴传感是很多厂家安放力矩传感器的地方。以日本YAMAHA、台湾的捷安特、美利达为代表的方案在此不另叙述。下面具体、详细介绍一种中轴力矩传感方案。
下图是清华1995年通过日本"国家安全委员会"检测并颁发认定证书的智能型电动自行车中使 偏心轴套用的偏心式中轴力矩传感器原 中轴套理示意图。骑行时,中轴在脚 中轴蹬、曲柄的作用下,在中轴套内转动。同时中轴和中轴套受 图三:中轴力矩传感器示意图到一个向下的力f,这个力将作用在偏心轴套上。偏心轴套安装在五通管内。由于中轴和中轴套与偏心轴套不同心,在这个力f的作用下,偏心轴套将会在五通管内产生转动,形成角位移。人力停止蹬踏时,在另外一个弹性元件的作用下,偏心轴套复位。偏心轴套的角位移的大小随人的蹬踏力大小而变化。测量出这个不停变化的角位移,并以电压信号传输给微电脑控制器,即可实现智能骑行。
优点:结构紧凑,只有一个大五通中轴即可实现智能传感。
缺点:偏心轴套加工比较复杂,有一定的精度要求;此外有六个大小不同的轴承使其成本偏高,但这仅是小缺点,这个方案的最大缺点是由于偏心轴套的旋转,带动链轮盘产生前后微量位移,这个位移会引起链条产生松紧变化。

E、链条:压链式力矩传感器。

链轮盘杠杆机构压链式力矩传感器是 平叉 导向轮一种结构简单、造价便宜、
性能可靠、重量轻、使用价值很高的传感方案。搞好了实属价廉物美之产品。 位移测量装置 链条 飞轮具体方案大家一目了然, 图四:压链式力矩传感器示意图
在此不再多说。这里仅将设计时需要注意的一点提醒大家:现在有些厂家也设计了压链式力矩传感器,但使用中由于链条在行驶过程中的抖动产生位移,从而引起力矩传感器的误识别。图示方案采用杠杆原理,使导向轮在力的作用下,上下移动的范围控制在2∽3mm之内,通过杠杆原理放大,位移传感装置接受到的位移量将在10∽15mm左右。这样就可有效地克服链条抖动产生误动作。压链式力矩传感器技术成熟,有应用前景。

F、飞轮、后轴、轮毂:后置式力矩传感器。

将力矩传感器置于飞轮、后轴、轮毂处的方案可统称为后置式力矩传感器。
后置式力矩传感器的大体都采用主、从动轮方案。主动轮与飞轮相联,从动轮与后轮相联,中间用弹性元件连接,原理与链轮式力矩传感器基本相同。后置式力矩传感器安放在轮毂内部时,主动轮与飞轮连接,从动轮与轮毂外转子连接,中间是弹性元件。日本三洋和北京清华都已研制、生产了含内置式力矩传感器的电机轮毂,已申报了相关专利。

上面简单介绍了力矩传感器的基本原理。具体应用须看整车的具体布局和质量、价位和对测力的要求来选择何种方案最合适,不能生搬硬套。总之,了解一些力矩传感的知识是非常必须的。现在有些厂家自称掌握了智能型电动自行车的技术,但是不懂力矩传感方面的知识。他们所说的智能技术是假智能。假智能的骑行感觉是不好的。我国的电动自行车要走向世界,必须掌握智能技术和力矩传感技术。同时,为了生产出合格的智能型电动自行车,还必须掌握微电脑控制技术。只有这样,我们才有可能成为真正的电动自行车大国、强国,为中国的电动自行车事业作出自己的贡献!


与电动汽车电路布置相关的内容