导航:首页 > 电动新能源 > 电动汽车总线通讯协议

电动汽车总线通讯协议

发布时间:2021-05-13 05:28:49

1、纯电动汽车CAN总线应用整车控制策略研究与经验

纯电动汽车的国内外发展背景

汽车享有“第一商品”的美誉,因为,汽车工业的发展,可以带动众多产业发展。一辆轿车的零部件数以万计,附加值很高,一辆车背后是一系列的产业。因此,汽车工业也就成为了衡量一个国家工业化水平和综合科技水平的重要标志。

我国的汽车工业水平落后先进国家,短时间内在内燃机领域是不可能消除差距的,中国大规模发展燃油车动力汽车,在环境、资源、技术等方面面临严重压力,所以,从国内的资源和环境条件,也要求中国在未来的汽车工业必须探索新的思路。

随着我国国民经济持续高速发展,轿车成为我国居民消费的主要商品之一,我国汽车工业也将迎来一个快速发展的机遇,发展燃油车,会依赖石油资源需求的激增,同时会造成对环境、环保的负面影响,电动汽车恰好避免或者减少这些不利因素。

当代融合多种高新技术企业而兴起的纯电动汽车、混合动力汽车正在引发世界汽车工业一场革命,展现了中国企业工业的光明未来。近些年来,美国、日本、欧洲的一些国家和跨国公司已经投入大量资金和研发成本,我国也奋起直追,积极投入电动汽车研究与开发,目前新能源车在市场、整车、生产、应用等多方面实现了赶超和创新成果转化及产业化。

在电动汽车领域,我们和世界发达国家处于同一起跑线,不少方面还处于世界领先地位,这为我国汽车工业技术实现跨越发展提供了一次历史性的机遇。更重要的是我国还有后发优势,因为生产电动汽车不仅仅是发动机的更改,而且是设计、制造、材料、电气、控制和整个社会服务体系的全面变革,我国电动汽车发展,没有包袱,市场巨大,生存空间充足。

此外,我们还可以通过开发自主的电动汽车,申请专利、制定标准,保护自己的汽车工业。加入世贸组织后,再靠关税、政府政策来保护本国利益已经不行了,一流企业做标准,国家也一样,这是产业的游戏规则。电动汽车的零排放标准及低排放控制政策就可以很好的保护本国的合法权益。

我国电动汽车开发走在国际的前列,目前还需要攻破关键的电池技术,电机和电控基本已经完善,面向世界推出纯电动汽车、燃料电池电动汽车和混合动力电动汽车。

纯电动汽车CAN总线实际应用

2016年,速锐得科技与中汽中心、清华大学、国家计量、环保部等,用一年时间研究了纯电动汽车和重型燃油车排放等标准。速锐得作为合作方,主要任务是定制纯电动汽车CAN总线应用层和开发CAN总线整车控制策略节点的软件部分和主控制器CAN总线底层DBC驱动程序。在充分理解整个系统的基础上,参考SAE J1939协议定制符合电动汽车特点又兼容混合动力汽车的CAN总线协议,定制完成后,将适配好的DBC文件提交中汽中心。

CAN总线位定时?是在CAN中比较复杂的内容,现有的CAN总线方面对位定时讲解的过于含糊而且不统一,在纯电动汽车系统开发过程中,我们实际使用了远不止几款CAN芯片,在SAE J1939的基础和CAN 2.0B基础上,设计了符合电动汽车特点的CAN总线协议,引入了调度算法,提高了系统的性能,给纯电动汽车系统提供了一个良好的调试测试环境,还在CAN总线系统测试指导下,开发出指定车型的CAN总线监控节点的DBC文件。

纯电动汽车各ECU单元的作用

在纯电动汽车控制系统中,主要包括4个节点,即主控制器ECU、电机控制ECU、电池管理系统BMS及CAN总线控制单元。

主控制器ECU相当于纯电动汽车的大脑,它起到控制全局的作用,主控制器ECU接受汽车上传感器的信息,通过A/D转换后计算,编码为CAN报文,发送到总线上控制其他节点的工作。同时,将一些整车相关的信息(车速、电池SCO、踏板位置、电池状态、门锁信息)在组合仪表上显示出来。其中最核心的就是通过传感器的输入值与系统当前状态及汽车工况等条件计算出合适的电机扭矩值,通过CAN总线发送到电机控制系统,指挥电机正确工作。另外,主控制器ECU还控制主继电器的开关,使得整个系统上电和断电,行业有的把这些集成在VCU里面。

电机控制ECU相当于纯电动汽车的四肢,它的主要工作是主控制器发送扭矩值为输入值,采用双闭环控制来调速电机,使电机工作在需要的转速下,根据电动机的温度变化控制电机的冷却水泵和冷却风扇,从而有效的调节电机温度。

纯电动汽车的电池是有几十块单体电池成组供电的,并能保证在不供电时电池不成组,每块电池的电压不超过5V,这样由于单个电池的性能差异,就需要在电池充放电过程中经常要均衡电压,保证电池性能,这个由BMS电池管理系统来控制。BMS等同于电动汽车血液循环的心脏,电池为血液循环及能量系统。

纯电动汽车CAN总线的特点

CAN总线控制单元主要是在不干扰总线数据传输的情况下,对总线上传输的数据进行实时监控,实时记录和实时报警,还提供了离线分析功能在纯电动汽车调试阶段对主控制器主要计算参数进行标定。各个子系统依靠CAN总线传输数据,进行数据交换,实现整个分布式系统的控制功能,为了充分利用总线的带宽,合理分配了8个数据字节的空间,将相关的数据放到一个报文里进行传输,保证数据帧有效信息传输比重。

在纯电动汽车运行过程中,是一些固定的工作状态之间进行切换,一般有停车状态、充电状态、启动状态、运行状态、车辆前进和后退状态、回馈制动状态、机械制动状态、一般故障状态、重大故障状态。纯电动汽车控制系统正是通过CAN总线协议进行通讯和传递参数,将各个分散的节点连成一个闭环系统,把每个节点的特点发挥到最好,在CAN总线技术总有几个关键技术(定位时、总线终端匹配阻抗、CAN驱动器电路设计和DBC应用层协议的设计)这也是CAN调试中的难点。

CAN总线定位时本质上和总线的同步是紧密相关联的,CAN总线系统的收/发双方必须以同步时钟来控制数据的发送和接收。接收端在相当长的数据流中保持位同步。必须要能识别每个二进制位是从什么时候开始的。为此,对于硬件终端的处理能力提出了高处理能力的需求,如果是直接通过4G/5G远程传输到云端,目前行业内可能成熟的产品有速锐得的V81。为保证接收时钟和发送时钟严格一致,采用接收器通过调节器从数据中提出同步信号或者是接收器和发送器统一时钟的方法,CAN总线的定位时在系统位编码/解码时采用自有的方式保证系统同步。

CAN总线的一般按照功能的不同分为几个不同的时段:在预分频倍数确定时,一定波特率的CAN总线系统的同步段就是已经确定下来了,而其他几个时间段是可变的,所以,我们可以发现在位定时配置中可以存在几组不同的参数都可以满足波特率的要求,应用这些参数,系统基本上可以正常运行。但是在这些组的参数中,存在一组最优的,这组最优的配置参数需要根据系统的最大总线长度和总线节点的振荡器容差来确定。

如果要获得一个给定速率下的最大总线长度,就应考虑采样点应该尽可能接近周期的末尾处。如果要使系统中每个节点可以有更大的振荡器容差,则需要在位周期中点附近选择采样点,正是由于振荡器容差和总线长度的矛盾,所以需要我们优化位定时参数,使得系统获得更大的振荡器容差和最大总线长度。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

2、请问车载can总线的通信协议都是统一的吗?

感谢题主的邀请,我来说下我的看法:

当然不统一,你看像是汽油发动机的车,它们一般就都采用ISO15765协议来规范汽车CAN总线的使用。柴油发动机的汽车呢?它们一般采用J1939协议。至于电动车,它们目前用的CAN协议基本上都是基于J1939研究出来的。如果想进行汽车CAN协议的解析的话,可以前往我们的网站进行咨询,欢迎来访。

3、纯电动汽车一般有几条CAN总线,它们之间可以实现信息共享吗?

一般有四条总线;启动,舒适,ESC,动力CAN总线,它们通过网关可以实现信息共享,

4、在纯电动汽车系统,整车通讯系统中MCANH MCANL是什么意思?

这是在车辆上使用的通信网线,MCANH,是这个网线上的高电压端,MCANL是低电压端,也就是相当于家庭里所用的网线,他是车辆电脑之间的通信线,

5、电动汽车一般采用哪四类总线?

电动汽车一般采用CAN总线、I2C总线、SPI总线、SCI总线四类总线. 目前大多电动汽车采用的是CAN数据通信总线

6、请问家庭小轿车的can总线通信协议是什么呢?

感谢题主的邀请,我来说下我的看法:

这要分是什么车,如果是常见的汽油发动机的小轿车的话,那它的CAN总线协议类型就是ISO15765,如果小汽车的发动机是电动机的话,那它的CAN总线协议就不一定了,一般都是基于J1939 协议开发出来的新协议。如果您想要进行家庭轿车的CAN协议解析的话,可以前往我们的网站进行具体咨询,欢迎来访。

7、什么是新能源汽车can总线通信

新能源汽车呢就是指的当下的一些带电动机的纯电动或混动骑车,CAN总线通讯呢就是指汽车里面好多模块 比如收音机啊 刹车啊 DVD啊 胎压监测啊 大灯啊 那些东西之间是需要通信的 你在中控上操作 中控就需要发命令下去让设备去执行 这就是通信啊。然后下面的设备也要把当前状态汇报上来给中控 这也是通信啊 他们之间的通信是通过CAN总线协议的 所以就叫做CAN总线通信。

8、电动汽车的车型复杂多样,TBOX如何做好汽车的总线数据功能协议适配?

一般可以借助 CANalyst-II 总线报文收发器工具与汽车的 CAN 总线相连,可以获取到 CAN总线上广播的 CAN 数据包。通过 CanTest 软件可以实时的观察到 CAN 总线上正在发送的数据包。

从大量的 CAN 数据包中进行逆向分析,找到汽车车身的控制指令对应的是哪一个 CAN ID,逆向分析出这样 CAN 数据包所代表的含义,这是最基本也是最重要的一步。逆向出了这些车身控制的数据包指令信息后,了解这些数据包的工作原理。根据这些数据包的工作原理,制定出可行性攻击策略。例如:

对于车身的某一项功能的控制,只需要一个 CAN ID 的数据包即可达到控制效果,对于这种情况,只需要单纯的重放这一个数据报即可达到攻击的目的,控制汽车车身的某一项功能。对于车身的某一项功能的控制,可能需要多个 CAN ID 的数据包联合才能控制。构造一个这样的 CAN ID 数据包,设定发送间隔发送到 CAN 网络当中,间隔的制定是为了绕过 ECU 的时间检测机制。

某些的 CAN ID 数据包中带有计数器,我们所谓的心跳包,在攻击的时候必须加上计数器,才能绕过系统检查。编写一个脚本程序模拟 CAN ID 数据包数据位的变化规律,将这样的数据发送到 CAN 总线当中等等。

数据包上一共 8 位,每一位上的字节代表什么。例如速度表上的数值,是 CAN 数据包数据位某几位数值,带入一个计算公式计算出来的,前两位数值相加与第四位数值的乘积为当前的车速值。对于这种数据包的破解,我们需要大量收集这个数据包,逆向出来这个公式。

CanTest 的 DBC(数据库功能)功能逆向数据包所代表的指令,DBC 功能能够显示当前总线中有多少种 CAN ID。在汽车作出动作指令后,CAN ID 的报文是如何进行变化的,DBC 会把变化的部分标成红色。通过观察哪一个 CAN ID 在汽车发出指令后发生变化(这种变化通常只在瞬间),来确定此项车身控制指令对应的是哪一个 CAN ID。

以车门数据为例,通过改变车门的开关状态,利用 DBC 进行观察。在车门改变开关状态的同时,观察是哪一个 CAN ID 发生了变化,从而确定和车门状态相关的 CAN ID是哪一个。测试环境说明:汽车未启动,车内一切电器设备保持原有状态,只对车门状态进行改变,DBC 界面如图:

通过实验统计发现车门的开关状态和数据位的第一位的第二个字节有关:

** ** ** 10 04 19 02 FF。

四个车门正好有 16 种状态,第一位的第二个字节正好能全部表示,如下表 3-2 所示:√表示车门开,×表示车门关。

这些知识相对专业,希望能答复到你

9、电动汽车充电机的接口和通信要求

充电机接口:充电机与电动汽车之间的连接应包括以下几部分:高压充电线回路、充电控制答导引线、充电控制电源线、充电监控通信连接线、接地保护线。同时,充电机应预留与充电站监控系统连接的通信接口。
充电机通信要求:推荐采用CAN总线以及CAN2.0协议作为充电机的通信总线形式和通信协议。
通信内容包括:动力蓄电池单体、模块和总成的相关技术参数,充电过程中电池的状态参数,充电机工作状态参数,车辆基本信息等。


与电动汽车总线通讯协议相关的内容