1、电动车电机的构造
电动机的结构:由定子、转子和其它附件组成。
定子(静止部分)
定子铁心构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。
定子绕组构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。
电动机接线盒内的接线:电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。
机座构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。
2. 转子(旋转部分)
三相异步电动机的转子铁心:构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。
三相异步电动机的转子绕组构造:分为鼠笼式转子和绕线式转子。
鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。
绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。
相异步电动机的其它附件
端盖:支撑作用。
轴承:连接转动部分与不动部分。
轴承端盖:保护轴承。
风扇:冷却电动机。
(1)电动汽车马达结构与原理图扩展资料
电动车电机 是指用于电动汽车的驱动电机。根据其使用环境与使用频率的不同,形式也不同。不同形式的电机其特点也不一样。电动车电机按照电机的通电形式来分,可分为有刷电机和无刷电机两大类;按照电机总成的机械结构来分,一般分为“有齿”和“无齿”
永磁式直流电机:由定子磁极、转子、电刷、外壳等组成。
定子磁极采用永磁体(永久磁钢),有铁氧体、铝镍钴、钕铁硼等材料。按其结构形式可分为圆筒型和瓦块型等几种。
转子一般采用硅钢片叠压而成,漆包线绕在转子铁心的两槽之间(三槽即有三个绕组),其各接头分别焊在换向器的金属片上。
电刷是连接电源与转子绕组的导电部件,具备导电与耐磨两种性能。永磁电机的电刷使用单性金属片或金属石墨电刷、电化石墨电刷。
2. 无刷直流电机:由永磁体转子、多极绕组定子、位置传感器等组成。
无刷直流电机的特点是无刷,采用半导体开关器件(如霍尔元件)来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点。
位置传感器按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。
3. 高速永磁无刷电机:由定子铁心、磁钢转子、太阳轮、减速离合器、轮毂外壳等组成。
电机盖子上面可以装上霍尔传感器,用以测速。
位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。电动汽车多用的是霍尔元件。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件,当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号。
定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。
参考资料:电动机电机-网络2、电动汽车电机的原理是什么?
电动汽车电机是指以车载电源为动力,电动汽车电机用电机驱动车轮行驶,电动汽车电机符合道路交通、安全法规各项要求的车辆。由于对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟。电源为电动汽车的驱动电动机提供电能,电动汽车电机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。[
3、北汽纯电动汽车的结构和工作原理是什么?
北汽纯电动汽车三大核心部件,即电池、电机、电控系统,
纯电动汽车的电池相当于普通燃油汽车的油箱,为汽车运行提供全部能量。
纯电动汽车的电机相当于普通燃油汽车的发动机,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。
对于纯电动汽车而言,整车控制器相当于汽车的大脑,它根据驾驶员意愿和各系统实时状态,通过对比分析后做出决策并发出指令,合理分配动能,使车辆运行在最佳状态。
4、电动车电机内部结构图
如果电路板上有电子元件的话,你就必须换同样的霍尔电路板才行。如果没有的话,可以直接连接的,把霍尔组件有字的一面向上,从左往右以此是;正极、负极和信号线,如果是120度的,在安装时就将三个霍尔中间的一个背面朝上就可以了。
霍尔正负极公用,信号线还得按原来的顺序接上才行,比如从左往右是;黄、绿和蓝。
5、马达的工作原理及制作方法
起动机的工作原理 汽车起动机的控制装置包括电磁开关、起动继电器和点火起动开关灯部件,其中电磁开关于起动机制作在一起。 一、电磁开关 1.电磁开关结构特点 电磁开关主要由电磁铁机构和电动机开关两部分组成。电磁铁机构由固定铁心、活动铁心、吸引线圈和保持线圈等组成。固定铁心固定不动,活动铁心可以在铜套里做轴向移动。活动铁心前端固定有推杆,推杆前端安装有开关触盘,活动铁心后段用调节螺钉和连接销与拨叉连接。铜套外面安装有复位弹簧,作用是使活动铁心等可移动部件复位。电磁开关接线的端子的排列位置如图所示 2.电磁开关工作原理 当吸引线圈和保持线圈通电产生的磁通方向相同时,其电磁吸力相互叠加,可以吸引活动铁心向前移动,直到推杆前端的触盘将电动开关触点接通势电动机主电路接通为止。 当吸引线圈和保持线圈通电产生的磁痛方向相反时,其电磁吸力相互抵消,在复位弹簧的作用下,活动铁心等可移动部件自动复位,触盘与触点断开,电动机主电路断开。 二、起动继电器 起动继电器的结构简图如图左上角部分所示,由电磁铁机构和触点总成组成。线圈分别与壳体上的点火开关端子和搭铁端子“E”连接,固定触点与起动机端子“S”连接,活动触点经触点臂和支架与电池端子“BAT”相连。起动继电器触电为常开触点,当线圈通电时,继电器铁心便产生电磁力,使其触点闭合,从而将继电器控制的吸引线圈和保持线圈电路接通。 三、东风EQ1090型汽车起动电路 东风EQ1090型汽车使用的是QD124型起动机,为电磁控制强啮合式起动机,采用滚动式单向离合器、驱动齿轮为11齿,额定功率为1.5kw,其起动电路如图10-4所示,包括控制电路和起动机主电路。 1. 控制电路 控制电路包括起动继电器控制电路和起动机电磁开关控制电路。 起动继电器控制电路是由点火开关控制的,被控制对象是继电器线圈电路。当接通点火开关起动挡时,电流从蓄电池正极经过起动机电源接线柱到电流表,在从电流表经点火开关,继电器线圈回到蓄电池负极。于是继电器铁心产生较强的电磁吸力,是继电器触点闭合,接通起动机电磁开关的控制电路。 2. 主电路 如图中箭头所示,电磁开关接通后,吸引线圈3和保持线圈4产生强的电磁引力,将起动机主电路接通。电路为: 蓄电池正极→起动机电源接线柱 → 电磁开关→ 励磁绕阻 → 电枢绕阻→搭铁→ 蓄电池负极,于是起动机产生电磁转距,起动发动机。 马达,是电动机的俗称.其工作原理是根据电磁感应原理来进行工作的.载流导体在磁场中受到力的作用而运动.你说的那些线圈是一些用铜芯或铝芯的漆包线绕制而成的,称为定子线圈,基本上都是用铜芯漆包线,是对称布置在定子槽里;当中旋转部分称为转子,是用一些铝条构成转子绕组.当定子线圈中通入三相对称电流时,便产生旋转磁场,转子导体切割旋转磁场而产生感应电势,在电势的作用下,转子导体流过电流,转子电流与旋转磁场相互作用,使转子受到电磁力产生的电磁力矩的推动而旋转起来. 在这儿我说的是三相电动机. 对于单相电动机,由于它的起动力矩为0,所以要在其内部产生一个旋转磁场才能使电动机转起来,一般在安置工作绕组的同时还要安置一个起动绕组,这两个绕组在电动机里的分布在空间上要有一个角度.这样在电动机里通入不同相的电流,就能产生旋转磁场,从而使电动机转起来.一般用电容起动或电阻分相起动. (优因培社会实践组)
6、电动摩托车电机的内部构造图
电动摩托车电机的内部构造图如下:
电机盖子上面可以装上霍尔传感器,用以测速。位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。电动汽车多用的是霍尔元件。
光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。
转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。
(6)电动汽车马达结构与原理图扩展资料
无刷直流电动机之所以被广泛应用于电动车,是因为它与传统的有刷直流电动机相比具有以下二方面的优势。
(1)寿命长、免维护、可靠性高。在有刷直流电动机中,由于电机转速较高,电刷和换向器磨损较快,一般工作1000小时左右就需更换电刷。
另外其减速齿轮箱的技术难度较大,特别是传动齿轮的润滑问题,是有刷方案中比较大的难题。所以有刷电机就存在噪声大、效率低、易产生故障等问题。
(2)效率高、节能。一般而言,因无刷直流电动机没有机械换向的摩擦损耗及齿轮箱的消耗,以及调速电路损耗,效率通常可高于85%,但考虑到实际设计中的最高性价比,为减少材料消耗,一般设计为76%。
而有刷直流电动机的效率由于齿轮箱和超越离合器的消耗,通常在70%左右。
7、四驱车电动机原理图
1982年日本将专业竞技用的无线电摇控赛车加以缩小,去掉转向及摇控装置,成功制造了第一台微型的四轮驱动的赛车,英文的“MINI”,中文是微型的意思。由于属于竞技电力驱动赛车,配套开发出马达,马达型号为130型,后统称迷你四驱车马达。
中文名
迷你四驱车马达
外文名
MINI 4WD
马达型号
130型
日文
ミニ四駆车
迷你四驱车马达
迷你四驱车马达简介
在日语的“ミニ”其谐音乃“迷你”于是人们喜欢将微小的东西都叫“迷你”。迷你赛车从诞生的那天起,就以仿真、新颖的外型、强大的动力,闪电般的速度,吸引了成千上万的青少年,风靡了日本乃至全球。 按真车缩小32倍,以130电机和两节5号电池为动力的四轮驱动模型车,中文:迷你四驱车 英文:MINI 4WD。 日文:ミニ四駆车,而驱动迷你四驱车的动力源就是130马达,后统称迷你四驱车马达。
国际通用130型电动机(马达)
迷你四驱车马达: 四驱车上电动机(马达)的型号均为本130扁型。由电动机在制作时的选材不同,其制作成本及工作性能差别很大。优质电动机的磁钢(定子)采用稀土合金材料制成,磁场强度高于普通磁铁近处10倍;转子也为低磁阻合金制成。这种电动机工作时扭矩大、转速高又省电(空载转速在56000转/分 以上)。但购买价格也偏高了些。如今迷你四驱车的电动机品牌很多,优劣混杂,车手对马达的挑选就显得非常必要了。一般情况下我们手中无测试仪器,挑选时可采取比较马达磁钢的磁场强度和试转电动机轴承看运转灵活与否和观察零件等方法,来判断电动机性能的优劣。 在者就是品牌的知名度与信誉。如果动手能力强,就自买配件,自己绕制组装马达。