导航:首页 > 电动新能源 > 电动汽车can网络

电动汽车can网络

发布时间:2021-10-29 04:01:24

1、知豆电动汽车can总线故障怎么回事

kan线通信故障,给服务站打电话让他们给你修修········小毛病

2、关于电动车,制动信号怎么直接接到CAN总线上?

我接触的电动汽车中,油门信号和刹车信号都是整车控制器采集(ECU)然后转发给CAN总线。直接把制动信号引入CAN总线没有接触到这样的情况,因为刹车踏板需要标定,刹车信号可能需要滤波和斜波函数的处理,需要ECU的处理,并且CAN总线比较复杂,没有ECU就不能打包成帧。

3、你好,知豆电动车出现CAN总线通信故障怎样解决?

你好,CAN通讯故障后,详细检查通讯线是否存在断路、短路或者搭铁情况,终端电阻是否正常,也有可能是控制器问题导致。
希望能帮到你!

4、什么是新能源汽车can总线通信

新能源汽车呢就是指的当下的一些带电动机的纯电动或混动骑车,CAN总线通讯呢就是指汽车里面好多模块 比如收音机啊 刹车啊 DVD啊 胎压监测啊 大灯啊 那些东西之间是需要通信的 你在中控上操作 中控就需要发命令下去让设备去执行 这就是通信啊。然后下面的设备也要把当前状态汇报上来给中控 这也是通信啊 他们之间的通信是通过CAN总线协议的 所以就叫做CAN总线通信。

5、新能源汽车的信号传递全部都是通过CAN线传递?

CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。
CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。
Can 线不只新能源车有,汽油车也有,信号的传递就是靠他(也有lin线),主驾附近一般都有Obd接口,就是连接Can网络的。所以车辆故障码Dtc也是根据各路数据判断的。
一个新能源车一般有好几路Can线,动力总成\高压系统的Ecan,车身Can,电池内Can等等,还有一路Ican,负责把各路Can的重要的信号上传至网络(国标要求企业上传车辆数据至国家平台,同时也会上传至企业),供专业人员下载分析数据。我们就可以远程诊断车辆,甚至操纵车辆。

6、设计新能源汽车tbox与传统燃油发动机汽车tbox持术差异有哪 些?Tbox在整车CAN网络的位置与作用?

T-box是基于车规级对可靠性、工作温度、抗干扰等方面的严格要求,通过4G远程无线通讯、GPS卫星定位、加速度传感和CAN通讯功能,实现车辆远程监控、远程控制、安全监测和报警、远程诊断等多种在线应用的车联网标准终端。

随着车联网的逐步渗透,以及新能源汽车企业对车辆电池和整车状态信息的实时需求,全球T-box市场在2020年将达到38亿美元的市场规模,年复合增长率约27%。互联网行业的进入也将带动该市场增长。
根据工信部《新能源汽车生产企业及产品准入管理规定》,自2017年1月1日起对新生产的全部新能源汽车安装车载控制单元,新能源汽车的TBOX前装率将得到大幅度提升。新能源和中高档汽车将率先拉动前装T-BOX市场。从目前来看,车联网嵌入式平台系统终端单价约950元,随着前装终端的量产和市场竞争的加剧,T-BOX的成本和价格有望逐步下降。2016年,前装车联网设备渗透率约15%,预计2020年将达到36%, T-BOX仅终端市场规模达88亿元。
国内目前主要竞争还是来自国外企业,如Bosch、Continental、Harman以及Denso、 LG 等日韩企业。国内自主品牌汽车企业寻求与汽车电子公司合作开发T-box产品,以最低的成本迅速获取市场竞争力,占据有利地位。

7、纯电动汽车一般有几条CAN总线,它们之间可以实现信息共享吗?

一般有四条总线;启动,舒适,ESC,动力CAN总线,它们通过网关可以实现信息共享,

8、新能源汽车教学平台与can总线有什么关系

你好,这个问题,看你从什么角度去考虑,单说新能源汽车教学平台是一个教学体系,但在汽车技术上就要学到can总线连接,这是汽车模块与模块与电脑之间相互通讯的网络连接线,比较复杂,所以每个人的知识点不同,看到的问题就不一样,也可以说它们没有关系,因为一个是教学平台,而另一个是汽车网络的材料而已

9、纯电动汽车CAN总线应用整车控制策略研究与经验

纯电动汽车的国内外发展背景

汽车享有“第一商品”的美誉,因为,汽车工业的发展,可以带动众多产业发展。一辆轿车的零部件数以万计,附加值很高,一辆车背后是一系列的产业。因此,汽车工业也就成为了衡量一个国家工业化水平和综合科技水平的重要标志。

我国的汽车工业水平落后先进国家,短时间内在内燃机领域是不可能消除差距的,中国大规模发展燃油车动力汽车,在环境、资源、技术等方面面临严重压力,所以,从国内的资源和环境条件,也要求中国在未来的汽车工业必须探索新的思路。

随着我国国民经济持续高速发展,轿车成为我国居民消费的主要商品之一,我国汽车工业也将迎来一个快速发展的机遇,发展燃油车,会依赖石油资源需求的激增,同时会造成对环境、环保的负面影响,电动汽车恰好避免或者减少这些不利因素。

当代融合多种高新技术企业而兴起的纯电动汽车、混合动力汽车正在引发世界汽车工业一场革命,展现了中国企业工业的光明未来。近些年来,美国、日本、欧洲的一些国家和跨国公司已经投入大量资金和研发成本,我国也奋起直追,积极投入电动汽车研究与开发,目前新能源车在市场、整车、生产、应用等多方面实现了赶超和创新成果转化及产业化。

在电动汽车领域,我们和世界发达国家处于同一起跑线,不少方面还处于世界领先地位,这为我国汽车工业技术实现跨越发展提供了一次历史性的机遇。更重要的是我国还有后发优势,因为生产电动汽车不仅仅是发动机的更改,而且是设计、制造、材料、电气、控制和整个社会服务体系的全面变革,我国电动汽车发展,没有包袱,市场巨大,生存空间充足。

此外,我们还可以通过开发自主的电动汽车,申请专利、制定标准,保护自己的汽车工业。加入世贸组织后,再靠关税、政府政策来保护本国利益已经不行了,一流企业做标准,国家也一样,这是产业的游戏规则。电动汽车的零排放标准及低排放控制政策就可以很好的保护本国的合法权益。

我国电动汽车开发走在国际的前列,目前还需要攻破关键的电池技术,电机和电控基本已经完善,面向世界推出纯电动汽车、燃料电池电动汽车和混合动力电动汽车。

纯电动汽车CAN总线实际应用

2016年,速锐得科技与中汽中心、清华大学、国家计量、环保部等,用一年时间研究了纯电动汽车和重型燃油车排放等标准。速锐得作为合作方,主要任务是定制纯电动汽车CAN总线应用层和开发CAN总线整车控制策略节点的软件部分和主控制器CAN总线底层DBC驱动程序。在充分理解整个系统的基础上,参考SAE J1939协议定制符合电动汽车特点又兼容混合动力汽车的CAN总线协议,定制完成后,将适配好的DBC文件提交中汽中心。

CAN总线位定时?是在CAN中比较复杂的内容,现有的CAN总线方面对位定时讲解的过于含糊而且不统一,在纯电动汽车系统开发过程中,我们实际使用了远不止几款CAN芯片,在SAE J1939的基础和CAN 2.0B基础上,设计了符合电动汽车特点的CAN总线协议,引入了调度算法,提高了系统的性能,给纯电动汽车系统提供了一个良好的调试测试环境,还在CAN总线系统测试指导下,开发出指定车型的CAN总线监控节点的DBC文件。

纯电动汽车各ECU单元的作用

在纯电动汽车控制系统中,主要包括4个节点,即主控制器ECU、电机控制ECU、电池管理系统BMS及CAN总线控制单元。

主控制器ECU相当于纯电动汽车的大脑,它起到控制全局的作用,主控制器ECU接受汽车上传感器的信息,通过A/D转换后计算,编码为CAN报文,发送到总线上控制其他节点的工作。同时,将一些整车相关的信息(车速、电池SCO、踏板位置、电池状态、门锁信息)在组合仪表上显示出来。其中最核心的就是通过传感器的输入值与系统当前状态及汽车工况等条件计算出合适的电机扭矩值,通过CAN总线发送到电机控制系统,指挥电机正确工作。另外,主控制器ECU还控制主继电器的开关,使得整个系统上电和断电,行业有的把这些集成在VCU里面。

电机控制ECU相当于纯电动汽车的四肢,它的主要工作是主控制器发送扭矩值为输入值,采用双闭环控制来调速电机,使电机工作在需要的转速下,根据电动机的温度变化控制电机的冷却水泵和冷却风扇,从而有效的调节电机温度。

纯电动汽车的电池是有几十块单体电池成组供电的,并能保证在不供电时电池不成组,每块电池的电压不超过5V,这样由于单个电池的性能差异,就需要在电池充放电过程中经常要均衡电压,保证电池性能,这个由BMS电池管理系统来控制。BMS等同于电动汽车血液循环的心脏,电池为血液循环及能量系统。

纯电动汽车CAN总线的特点

CAN总线控制单元主要是在不干扰总线数据传输的情况下,对总线上传输的数据进行实时监控,实时记录和实时报警,还提供了离线分析功能在纯电动汽车调试阶段对主控制器主要计算参数进行标定。各个子系统依靠CAN总线传输数据,进行数据交换,实现整个分布式系统的控制功能,为了充分利用总线的带宽,合理分配了8个数据字节的空间,将相关的数据放到一个报文里进行传输,保证数据帧有效信息传输比重。

在纯电动汽车运行过程中,是一些固定的工作状态之间进行切换,一般有停车状态、充电状态、启动状态、运行状态、车辆前进和后退状态、回馈制动状态、机械制动状态、一般故障状态、重大故障状态。纯电动汽车控制系统正是通过CAN总线协议进行通讯和传递参数,将各个分散的节点连成一个闭环系统,把每个节点的特点发挥到最好,在CAN总线技术总有几个关键技术(定位时、总线终端匹配阻抗、CAN驱动器电路设计和DBC应用层协议的设计)这也是CAN调试中的难点。

CAN总线定位时本质上和总线的同步是紧密相关联的,CAN总线系统的收/发双方必须以同步时钟来控制数据的发送和接收。接收端在相当长的数据流中保持位同步。必须要能识别每个二进制位是从什么时候开始的。为此,对于硬件终端的处理能力提出了高处理能力的需求,如果是直接通过4G/5G远程传输到云端,目前行业内可能成熟的产品有速锐得的V81。为保证接收时钟和发送时钟严格一致,采用接收器通过调节器从数据中提出同步信号或者是接收器和发送器统一时钟的方法,CAN总线的定位时在系统位编码/解码时采用自有的方式保证系统同步。

CAN总线的一般按照功能的不同分为几个不同的时段:在预分频倍数确定时,一定波特率的CAN总线系统的同步段就是已经确定下来了,而其他几个时间段是可变的,所以,我们可以发现在位定时配置中可以存在几组不同的参数都可以满足波特率的要求,应用这些参数,系统基本上可以正常运行。但是在这些组的参数中,存在一组最优的,这组最优的配置参数需要根据系统的最大总线长度和总线节点的振荡器容差来确定。

如果要获得一个给定速率下的最大总线长度,就应考虑采样点应该尽可能接近周期的末尾处。如果要使系统中每个节点可以有更大的振荡器容差,则需要在位周期中点附近选择采样点,正是由于振荡器容差和总线长度的矛盾,所以需要我们优化位定时参数,使得系统获得更大的振荡器容差和最大总线长度。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。


与电动汽车can网络相关的内容