导航:首页 > 电动新能源 > 电动汽车制动能量回馈

电动汽车制动能量回馈

发布时间:2021-11-05 03:56:00

1、述电动汽车制动能量回收的方法有哪几种?

电动汽车制动能量回收的方法主要有3种

【1】飞轮储能

【2】液压储能

【3】电化学储能。

2、汽车动力回馈 怎么理解?

你说的应该是汽车制动力回馈系统,或者就是指的游戏厅里的模拟驾驶,可以模拟车辆在转弯加速减速以及碰撞时的效果,让游戏体验更逼真。
说一说汽车制动力回馈。车辆在制动的时候速度降低动能就随之减少,减少的这一部分能量被刹车系统和轮胎与地面的摩擦所吸收,导致刹车片及轮胎发热,可以说是完全浪费了,然而这一部分能量是之前车辆加速才产生的,因此频繁的加速刹车会浪费汽车的能量使油耗偏高。普通的内燃汽车因为其能量全部来自于燃油的消耗,其他形式的能量无法被利用转化,但是纯电动汽车和油电混合汽车就可以,因为它的能量来源既可以是燃油在发动机燃烧做功,也可以是蓄电池带动电动机做功。车辆制动时被浪费的能量就可以通过制动力回馈系统被转化成蓄电池的电能,待加速时被再次利用,但是制动力也不可能完全被吸收,更不可能完全被利用,这里有一个转化效率的问题,一般能达到百分之六七十就不错了。
再说一下制动力回馈的基本原理:电动机驱动的车辆,在制动时系统会断开驱动电机的电路(基本类似于断电刹),同时电机又会在车辆的行驶带动下转动,此时电机就会由电动机工况转变为发电机工况(发电机和电动机在原理上是可逆的,即外电源通电时为电动机,被外力驱动时为发电机),向蓄电池充电。这样制动时损失的车辆动能(也可以理解成惯性)就可以被利用了,直接驱动电机给蓄电池充电。当制动结束需要加速时,蓄电池又重新驱动电机带动驱动轮加速了。
以上只是通俗的解释,电机的工况转换以及充电、放电过程都由行车电脑按照一套严格的逻辑来控制,并不是任何车速时踩刹车就能把制动力回馈。
先解释这么多,不明白可以追问。

3、1、新能源汽车能量回馈制动控制的要求?

首先,车辆要行驶一段时间,功率达到规定值时,也就是速度达到一定要求。这时的制动才能产生能量回收。速度过慢是不会产生回收。

4、电动车制动能量回收的工作原理

制动能量回收是现代电动汽车以及混合动力汽车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的动能通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力汽车上,这种被浪费的动能已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。
制动能量回收就是把电动汽车电机无用的、不需要的或有害的惯性转动产生的动能转化为电能,并回馈蓄电池。同时产生制动力矩,使电动机快速停止无用的惯性转动,这个总过程也成为再生制动。
电动汽车正常行驶时,电动机是一个能将电能转化为机械能的装置。而这个转化过程常见的是通过电磁场的能量变化来传递能量和转化能量的,从更直观的力学角度来讲,主要体现为磁场大小的变化。电动机接通电源,产生电流,构建了磁场。交变的电流产生了心变的磁场,当绕组们在物理空间上呈一定角度布置时,将产生圆形旋转磁场。运动是相对的,等于该磁场被其空间作用范围内的导体进行了切割,于是导体两端建立了感应电动势,通过导体本身和链接部件,构成了回路,产生了电流,形成了一个载流导体,该载流导体在旋转磁场中将受到力的作用,这个力最终成为电动机输出扭矩中的力。当电动汽车减速和制动时,即切除电源时,电动汽车电机惯性转动,此时通过电路切换,往转子中提供相比而言功率较小的励磁电源,产生磁场,该磁场通过转子的物理旋转,切割定子的绕组,于是定子感应出电动势,也成逆电动势,此时电动机反转,功能与发电机相同,是一个将机械能转化为电能的装置,所产生的电流通过功率变化器接入蓄电池,即为能量回馈,至此制动能量回收过程完成。与此同时转子受力减速,形成制动力,这个总过程合称再生制动。

5、电动汽车制动能量回馈有四个重要的前提条件是什么?

行驶工况:行驶工况不同,汽车的制动频率不一样,从而可回收的制动能量不同。
蓄电池:蓄电池的充电效率要受到蓄电池的SOC值、蓄电池温度以及充电电流的限制。蓄电池SOC值很高或者温度很高时都不能进行制动能量回收。充电电流过大时,会使蓄电池温度快速升高,也不能回收制动能量。
电机因素:电机能够提供的制动转矩越大,能够回收的制动能量越多。电机的再生制动转矩受到发电功率和转速制约,当制动强度过大时,电机不能满足制动要求。
控制策略:为了保证在制动安全的条件下实现能量充分回收,需要合理设计再生制动与机械制动的分配关系
驱动型式:再生制动系统只能回收驱动轮上的制动能量。

6、电动汽车在制动能量回收回收时电机是不是在反转?

制动能量回收是现代电动汽车以及混合动力汽车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的动能通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力汽车上,这种被浪费的动能已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。


制动能量回收就是把电动汽车电机无用的、不需要的或有害的惯性转动产生的动能转化为电能,并回馈蓄电池。同时产生制动力矩,使电动机快速停止无用的惯性转动,这个总过程也成为再生制动。


电动汽车正常行驶时,电动机是一个能将电能转化为机械能的装置。而这个转化过程常见的是通过电磁场的能量变化来传递能量和转化能量的,从更直观的力学角度来讲,主要体现为磁场大小的变化。电动机接通电源,产生电流,构建了磁场。交变的电流产生了心变的磁场,当绕组们在物理空间上呈一定角度布置时,将产生圆形旋转磁场。运动是相对的,等于该磁场被其空间作用范围内的导体进行了切割,于是导体两端建立了感应电动势,通过导体本身和链接部件,构成了回路,产生了电流,形成了一个载流导体,该载流导体在旋转磁场中将受到力的作用,这个力最终成为电动机输出扭矩中的力。


当电动汽车减速和制动时,即切除电源时,电动汽车电机惯性转动,此时通过电路切换,往转子中提供相比而言功率较小的励磁电源,产生磁场,该磁场通过转子的物理旋转,切割定子的绕组,于是定子感应出电动势,也成逆电动势,此时电动机反转,功能与发电机相同,是一个将机械能转化为电能的装置,所产生的电流通过功率变化器接入蓄电池,即为能量回馈,至此制动能量回收过程完成。与此同时转子受力减速,形成制动力,这个总过程合称再生制动。

7、电动汽车有能量回收功能吗?

新能源汽车的生产和销售越来越多,越来越被消费者认可,新能源汽车的能量回收也越来越受到社会的重视。一般来说,新能源汽车的能量回收机制分为四种:液压储能、启停系统、飞轮储能和制动能量回收。制动能量回收是最常见的一种,主要回收车辆在制动或惯性过程中释放的多余能量,通过发电机转化为电能,再传递给蓄电池,供车辆动力行驶。电动汽车制动能量回收是提高能量利用效率的关键。只要车辆有电机和电池,就可以实现制动能量回收。制动能量回收技术涉及车辆电子控制、动力电池、驱动电机等多个部分。它是一项需要协调控制的系统技术。

不同的控制策略,如车辆能耗指标,有不同的制动量。当然,能量回收的最佳状态是同时精确控制再生制动力和机械制动力的结果,可以实现智能控制。当车辆制动强度没有路面附着系数大时,车辆未锁死时应尽量使用前轮制动力;当附着系数很大时,再生制动力达到最大值,只有再生制动力可以用于制动。简单来说,新能源汽车的能量回收功能就是一套精准智能的操作系统。在适当的状态下,所有组件可以相互协作,通过使用适当的能量回收方案可以获得最佳效率。特别是,制动能量回收需要集成电机和电池等关键元件,以实现最高效率。

能量回收方案目前有很多,但以制动能量回收为主,更简单高效。当车辆制动时,能量回收系统可以收集损失的动能,并通过发电机转化为电能,储存在电池中,成为驱动车辆的动力源。在许多实验和测试中,能量回收系统的性能非常出色,理论上甚至可以将汽车寿命提高50%以上。虽然能量回收系统可以提高新能源汽车的续航能力,但其自身的问题也不容忽视。目前市面上大部分新能源汽车搭载的能量回收系统,在接到开关后会产生太强的电制动力,无法与制动踏板产生的制动力充分配合,会导致汽车产生挫败感,甚至在提起开关时会有非常强烈的拉扯感,大大降低乘坐舒适性。

仍然有很多人质疑纯电动汽车的能量回收系统能减少多少浪费。根据专业人士的计算,当回收的能量再次转化为驱动能量时,需要经过很多关卡。此外,由于汽车的动力系统不同,传动效率也有很大差异。理论上寿命可以提高50%,但实际工况下只能提高不到9%。也就是说,能量回收能起到多大的作用取决于三个因素,驾驶条件、动力系统效率和车辆控制。一些纯电动汽车之所以没有配备能量回收系统,主要是考虑生产成本和用户舒适度。在电力技术相对稳定的情况下,如果企业不能提高电力系统的效率,能量回收系统可以发挥的作用非常有限。

8、什么是电动汽车再生制动能量回收控制系统

再生制动是电动汽车所独有的,在减速制动(刹车或者下坡)时将汽车的部分动能转化为电能,转化的电能储存在储存装置中,如各种蓄电池、超级电容和超高速飞轮,最终增加电动汽车的续驶里程。如果储能器已经被完全充满,再生制动就不能实现,所需的制动力就只能由常规的制动系统提供。
图1所示为电动轿车所采用的制动系统结构,当驾驶员踩下制动踏板后,电动泵使制动液增压产生所需的制动力,制动控制与电机控制协同工作,确定电动汽车上的再生制动力矩和前后轮上的液压制动力。再生制动时,再生制动控制回收再生制动能量,并且反充到动力电池中。


与电动汽车制动能量回馈相关的内容