1、汽车每个部位构造的讲解!!!
转向系统 方向盘、转向柱、转向节、方向机、转向拉、助力泵
转向系统是用来实现转向操作的
行驶系统 发动机、飞轮、离合器片、压盘、变速器、传动轴、轮毂、钢圈、 轮胎
实现动力传输与切断
悬挂系统 前桥、下臂、减震器
支撑车身的作用
制动系统 真空助力器、刹车总泵、ABS泵、刹车油管、ABS轮速传感器、刹车分泵、制动盘、制动鼓、手刹、刹车片
起制动作用
冷却系统 水箱、水泵、节温器、水套、水管
对发动机进行冷却
润滑系统 机油泵、机油集滤器、机油滤清器、
对发动机进行润滑
燃油系统 汽油泵、燃油管、汽油滤清器、燃油分配管、油压调节器、喷油嘴
为车辆起动提供稳定合适的燃油压力
点火系统 点火开关、点火线圈、分电器、高压线、火花塞
为车辆启动提供适合的点火能量
电控系统 ECU、传感器、线束、执行器
只能大体上说一下,看下《汽车构造》上面很详细
2、如何使用汽车FAB话术讲解后备箱
FAB对应的是三个英文单词:Feature(属性)、Advantage(作用,不是优点),Benefit(好处),按照这样的顺序来介绍,就是说服性演讲的结构,它达到的效果就是让客户相信你的是最好的。那么你可以从后备箱尾部造型设计,后备箱开启方式,后备箱开度以及深度来讲解各自作用和好处。
3、如何用60分钟讲解汽车基础知识
汽车基础知识
[名词解释篇]
MT:手动档 ABS:防抱死系统
AT:自动档 EBD:电子制动力分配系统
ESP:电子稳定程序 DSG:双离合器变速箱
CVT:无级变速 DSC:动态稳定控制系统
VDC:车辆动态控制 ETC:电子牵引力控制系统
TCS:全速牵引力控制系统 EBA:紧急制动辅助系统
EDS:电子差速锁 MASR:牵引力防滑控制
[引擎篇]
先说说最普遍的现象,一般人都会认为马力大就一定强一定快,但是同时却没有注意到以下问题:
最大输出功率:一般用马力(ps)或千瓦(kw)表示,发动机的输出功率和转速有和大联系,转速提高了发动机的输出功率也会随着提升,但是转速达到一定程度后输出功率会有所下降(这可能就是物极必反吧?哈!)最大输出功率通常表示为r/min,280ps/7500r/min,就是在每分钟7500转时能输出最大功率280匹.
最大扭矩:发动机输出的力矩,扭矩(扭力)一般表示为N.m/r/min,例如100N.m/3000r/min即是说在每分钟3000转时能发挥最大扭拘100N.M
排气量:气缸工作容积是指活塞从最上端到最下端扫过的体积,也就是单缸排量,取决于缸径和缸程(原理V=sh体积公式),发动机排量就是各缸排量的总和.
气门数:气门从字面上就能理解,就是进气和出气使的,当然是进引擎了啊.国内车一般都是用两气门的,一个进气一个出气,属于最基本的配置了啊.国外车一般都是采用先进些的四气门,就是两个进气门两个出气门这样能提高进出气效率,对提高发动机转速和功率有很大帮助.现在已经有的车开始运用五气门技术,3个进气2个出气,这样能加大进气量使燃烧更充分.但气门也不是越多就一定越好,因为加工极其困难,结构过于复杂
气缸排列形式:一般来讲是有直列,V型,W型(由两个V拼起来),水平对置,转子引擎.排列方式不同也会影响所占空间和车的重心.比较推荐直列6缸.
压缩比:汽缸活塞最大行程容积与汽缸活塞最小行程容积的比.汽缸中活塞移动到最低点时此点称为下止点,反之称为上止点,有很多人喜换直接用最大高与最小高度直接比得出压缩比,实际上是不正确的,因为汽缸的几何外型不一定规则上盖更不一定是规则平面所以在上止点时所剩的容积不能单纯的按高的比简单计算(压缩比与所用汽油的型号有很大关系)
一般来讲马力的大小多数决定于所用的引擎:
L4(直列四缸)
L5(直列五缸)
V6(V型排列六缸)
L6(直列六缸引擎,性能很好属于高档车才采用的)
2 一些汽车的基本知识
V8(V型排列8缸)
W8(W型排列8缸)
V12(V型排列12缸)
W12(W型12缸)
V16(V型排列16缸发动机)
W16(一般是由两部V8并列组成,很少数的豪华车使用,例:布加迪)
水平对置发动机(保时捷和SUBARU应用)
转子发动机(马自达应用,一般为RX型车)
缸数越多一般来说马力也会越大,但同时最重要的一点也不要忽视那就是缸数越多它的质量就也会越大,占用的空间同时也就增大了,而占用空间大也就进一步意味着车身的加大以及质量的进一步增大.而质量问题不仅会影响车的操控性和灵活性更会影响车的加速性能,因此在选择车型时一定要注意以上问题,不要盲目的看到车的马力大就选择,一般的民用车马力不会超过200匹,高性能些的运动车普遍在280匹马力左右,顶级的跑车会在500匹左右甚至更高.需注意的是一般顶级跑车都会运用碳纤维材料做车身,因此会很大程度减轻重量.而且赛车的内室通常会把没有实际用途的内饰等都拆除以达到进一步减轻重量的目的,在看过以上粗略的讲解或日后选择车就要开始注意这个问题了.
扭矩(扭力)
车子的最基本性能之一,恐怕很多稍微玩过赛车游戏的人都会更重视扭矩而胜过马力吧?而扭矩确实也是很关键的的一项指标,扭矩是发动机产生的扭转力矩,扭矩从发动机传送到车辆的变速器,再同变速器和差速器内几组联动的齿轮,将扭矩传输到车轮变速器在1档时会比3档传输更多的扭矩,因为1档具有前进档中最大的传动比,其实说白了就是加速性能,车子的加速性能往往会在比赛中起到举足轻重的作用,就像一般高级跑车都会有一项指标发布,就是0-100km/h加速时间,一般来讲能在4秒左右的车子就一定属于顶级车了。有极少数车可以在3秒以下。
这些车普遍都是马力与扭矩兼备的。(法拉利,林宝坚尼,福特GT,布加迪,克莱斯勒,帕加尼风之子等等,据说EVO 8 MR100公里加速只需4.3秒)有些车在低速是扭力能发挥到最高,也就是低速时的加速性能好,而有些车则是在高速时能发挥最大扭力,具体看车型不同需要自己体会.在启动时的快慢有时足以决定一场短距离比赛的胜负.而且在现今多弯道的赛道时代车子的加速性能更显的是突出的重要,扭矩的大小和上面所提到的车身质量也有着密不可分的关系,这就不用多解释了吧?
因此各各厂家都在对自己的车做车身的轻量化.扭力可以说是动力之源,马力的大小也是取决与扭力的,扭力配合转速就可以计算出车的基本马力了,而加速能力也不光只取决与扭矩还有一个重要环节就是轮胎(轮胎是车子非常关键的一项配备在后面我会详细讲解).重要的一点,相同排量车字缸数越多越好,当然也是有限度的啊,至于什么缸径越小越好就不用说了,相同排量缸数多缸径当然就小了啊.(最简单的数学体积公式啊V=sh,V总=nV)等级分的细致了速度的分级也就更细腻了,操纵感也会更强.
讲解一下大家比较感兴趣的涡轮增压和转子发动机:
涡轮增压技术:
提高压缩比是提高发动机功率的措施之一,而提高压缩比有两种途径,一种是花费较大的改变汽缸形式(不作讲解)另一种即是我们所常见的增加进气量的方法,涡轮增压就是牵制加大空气的输入输出量.
涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量,它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮有带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸.当反动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和增加发动机转速,即能增加输出功率.
[驱动篇]
车辆的驱动形式分为多种.个人了解共分为下列几种:
FF:前置引擎前轮驱动,前重后轻,前后重量分配不均匀不属于高性能驱动方式
FR:前置引擎后轮驱动,有良好的操控性比较灵活(后面有详细介绍)
4WD:4轮驱动,也有前置和中置之分,越野性能好(后面有详细介绍)
MR:中置引擎后轮驱动,连F1都采用的驱动方式,不用再多说了吧?性能理想稳定.
3 一些汽车的基本知识
RR:后置引擎后轮驱动,由于重量集中在后面所以容易发生甩尾现象.
由于大家比较常用的和关注的是FR和4WD所以在此做稍微细致的介绍:
FR:最快的运动方式通常都是依靠后面提供动力产生冲刺的能量而前面提供精准的控制,这一条大家不用有什么疑问,这个是物理学和几何学的基本法则之一,汽车的运动是需要能量的这一点谁都知道,而所需要的这大量的能量不管是加速,制动,还是转向,都必须通过4个轮胎很小的接触面来提供和传递,每个轮胎都会提供一定的抓地力,而抓地里的大小则取决与接触面的尺寸,材料及花纹,还有附加在上面的重量和与路面的摩擦力,如果某一个前论正在为加速提供所需的能量那根据能量守衡同时这个轮提供给转向的摩擦里就会降低,这种情况回导致转向不组,就是平时在过弯的时候如果速度过快总会觉得车往弯道外侧偏离(应该有这个感受吧?有些赛车游戏确实没有这感觉...就不举例了)高速的形式也会导致重量向后移,这样会提高后轮的抓地里,50/50的前后重量分配应该是最佳的比例.
4WD:AWD也属于4WD范围,只是全时4驱的意思.但日常的4WD通常是指分时4驱这套系统通常只能应用在低速牵引力的情况.扭矩的认识也是4WD理解的关键,前面有讲解.轮边差速锁:对于分时4WD而言通常在前轮头上有,平时2驱行驶时前轮没有驱动力,在接通4WD是分动器接通了前驱动轴,同时还要将轮边差速锁关闭才能变为4WD.结构:4WD的主要不见就是两个差速器和一个分动器.差速器分别位于前后两轮之间,传输扭矩,在转弯时车轮按照差速器输出的速度旋转,在转弯时4个轮按照不同的轮速行走,差速器允许例外轮速度不同.
工作原理:通常用开放式离合能将扭矩平均分配到4轮上,但是如果2个论中的一个离开了地面或者在光滑面上行走时力矩就会变为0,导致相对应的另一个轮也会变为0,如果发生这种情况既是两个轮都没有了牵引力,后果不用再说了吧?可以锁止后差速器,就算有一个轮离地也能继续前进.4WD车起步稳,越野性能佳,但是质量过大导致速度感不强.
[悬挂篇]
还是先要明确概念,所谓悬挂就是车架或者叫承载式车身与车桥(也就是车轮)之间的一切传力装置的总称,它包括了弹性元件,避震器和传力装置等三个部分,根据结构又可以分为独立悬挂和非独立悬挂这两种基本的类型.非独立悬挂一般是和整体车桥配合使用的,越野车的后悬挂一般都是采用非独立悬挂这种方式的,非独立悬挂的左右论是不互相独立的,也就是说当一侧的车轮由于某些原因位置发生变化时另一侧的车轮也会随之变化,而独立悬挂则相反,一般是与断开式车桥配合使用的,在轿车上比较普遍应用.两侧的车轮是互相独立的,即使一侧的车轮位置和运动方式发生变化另一侧的车轮也不回发生变化.
知道了基本概念,我们现在开始了解它的原理和作用,悬挂最关键的是弹簧和避震器.
弹簧
弹簧的功能是最直接也是最容易理解的啦,通过自身的伸缩来减缓路面所带来的震动.我们都应该知道,在平时生活中要是使劲压一下弹簧的话松手后弹簧弹起来的长度会比原长度还长一些,因此无法控制弹簧的回弹就回使汽车变的颠簸更厉害,避震器就可以解决这个问题了啊,避震器就是用来控制弹簧回弹的,当车开过不平的路面时,弹簧回是汽车弹起来,这样车胎就会离开地面,导致车本身失去抓地力,避震器就可以在着个时候一直弹簧把轮胎压在地上使汽车与路面保持平稳的接触.
汽车悬挂的偏软或偏硬主要是由选择的弹簧所决定的,偏软的弹簧无疑就能提高驾驶的舒适性可以吸收地面的颠簸,而且可以保持良好的抓地力,而偏硬的弹簧可以减少车身的晃动,增强车的操控性能,一般跑车和运动车都会采用便硬弹簧.改装弹簧就可以提高操控性,改装主要就是选用偏硬和偏短的弹簧,偏硬的好处上面已经说过了,短的好处就是降低车身,从而降低重心,提升汽车过弯时候高速的稳定性.
避震器
避震器与避震筒,活塞,阻尼油,阀门等部件组成,工作原理:在受力需要压缩或回弹时,利用活塞上下应动,推挤阻尼油通过阀门的小孔,而将此产生的热能用来抵消避震筒受到的震动.控制弹簧回弹的阻力我们称之为阻尼.如果避震器产生了较大的阻尼那么该避震器就较硬,运动车一般都需要吸收很大的车身晃动,为了同时能获得良好的操控性,会采用阻尼交大的偏硬避震器.
4 一些汽车的基本知识
避震器的改装与弹簧类似,为了更出色的操控性能,一般都选用阻尼大的避震器.想要改变阻尼的大小改变阻尼油通过阀门小孔的孔径就可以了.赛车和平时大家见的民用车采用唯一的阻尼设置都是不好的.
采用可调式避震器才是正确的选择.可调式避震器采用弹簧与避震器一体的设计,
高度可调阻尼可调,,调整高度可以降低重心增强高速稳定性阻尼可调,可以调整压缩力和回弹力,可以精确转向增强操控性.
调校,低速弯:入玩时转向不组可以降低前吸震筒的阻尼同时提高后吸震筒阻尼,转向过度相反调试即可.出弯给油时转向不足.FF车可调硬后吸震筒,FR车则减低前吸震筒.中高速弯:入弯转向不足可以提高后吸震筒阻尼,转向过度则相反.出弯给油转向不足可以调整后吸震筒硬度.高度:前低后高倾向转向过度,前高后低则转向不足.
[车身篇]
许多喜欢改装人的最爱,但是有很大一部分人只是喜欢它的外观所带来的视觉冲击,但没有了解它存在和安装的真正意义和作用
扰流板就是安装在汽车车身上的一些板类不见,用来改善和平衡汽车高速行驶是的动力和稳定性.在空气动力学上,空气的流速与空气的压力是成反比的,也就是说空气的流速越快所受的压力即越小,反之则越大.
汽车的侧面外型会造成高速行驶中存在下大上小的气流压力,如此就会有一个上下压力差而产生上升力,车速越快压力差就会越大,也就是上升力会增大,会越来越明显.它是车在行驶中所受空气阻力的一部分,上升力不但会消耗车本身的动力最关键的是会减少车轮与地面的附着力,这样会使车子发飘,行驶时的稳定性也会变差了,所以现在才会有各种各样的扰流板出现,主要目的就是为了是高速行驶的车获得额外的下压里是轮胎能更好的抓紧地面,行驶更加稳定.
尾翼
根据以上所讲,当车速超过60公里/时的时候,空气阻力对车的影响就非常明显了,使用了汽车尾翼即可产生一种附加的作用力,即下压力.也就是对地面的附着力,它能抵消一部分上升力,控制汽车上浮,减小风阻影响使车辆紧贴路面行驶,从而提高稳定性,加装尾翼也可以节省燃料一般来说小排气量车不要加装尾翼,因为自身车速还达不到尾翼所能发挥正面作用的时速,反而只是增加了车身的质量,大排量车安装尾翼还是有必要的.
现在的尾翼基本有3种材料制成,一种是原车配备的玻璃钢材料,比较贴合车身曲线美,一种是铝合金材料制成的,一般外观比较夸张,但导流效果确实不错,但是质量过大也是一大缺点,最佳材料可以说是碳纤维材料的尾翼,具有高刚性和高耐久性并且质量小外型美观.尾翼上扰流板的位置有些可调,调节方式有手动和自动两种,自动调校有液压力住,可根据车速自动调节角度,手动调校比较方便,尾翼并不是越大越好,因为主要作用是提供下压力使车子高速行驶更稳定,所以只要有最佳的扰流效果即可,不必增加多余的质量负担.
4、关于汽车的一切知识
【汽车概述】
“汽车”(automobile)英文原译为“自动车”,在日本也称“自动车”(日本汉字中的汽车则是指我们所说的火车)其他文种也多是“自动车”,唯有我国例外。
在我国,汽车是指有自身装备的动力装置驱动,一般具有四个或四个以上车轮,不依靠轨道或架线而在陆地行驶的车辆。汽车通常被用作载运客、货和牵引客、货挂车,也有为完成特定运输任务或作业任务而将其改装或经装配了专用设备成为专用车辆,但不包括专供农业使用的机械。全挂车和半挂车并无自带动力装置,他们与牵引汽车组成汽车列车时才属于汽车范畴。有些进行特种作业的轮式机械以及农田作业用的轮式拖拉机等,在少数国家被列入专用汽车,而在我国则分别被列入工程机械和农用机械之中。
按照国家最新标准GB/T 3730.1—2001对汽车的定义:由动力驱动,具有四个或四个以上车轮的非轨道承载的车辆,主要用于:载运人员和(或)货物;牵引载运人员和(或)货物的车辆;特殊用途。本术语还包括:a)与电力线相联的车辆,如无轨电车;b)整车整备质量超过400kg的三轮车辆。
美国汽车工程师学会标准SAEJ 687C中对汽车的定义是:由本身动力驱动,装有驾驶装置,能在固定轨道以外的道路或地域上运送客货或牵引车辆的车辆。
日本工业标准JISK 0101 中对汽车的定义是:自身装有发动机和操纵装置,不依靠固定轨道和架线能在陆上行驶的车辆。
按照国家最新标准GB/T 3730.1—2001汽车主要分为乘用车和商用车.
乘用车:在其设计和技术特性上主要用于
载运乘客及其随身行李和/或临时物品的汽车,包括驾驶员座位在内最多不超过9个座位。它也可牵引一辆挂车。分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车和专用乘用车等11类;
商用车:在设计和技术特性上用于运送人员和货物的汽车,并且可以牵引挂车。乘用车不包括在内。商用车分为客车、货车和半挂牵引车等3类。客车细分为小型客车、城市客车、长途客车、旅游客车、铰接客车、无轨客车、越野客车、专用客车。货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专用作业车、专用货车。
[编辑本段]
【基本构造】
汽车一般由发动机、底盘、车身和电气设备等四个基本部分组成。
一.汽车发动机:发动机是汽车的动力装置。由2大机构5大系组成:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系.
1.冷却系:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用两种冷却方式,即空气冷却和水冷却。一般汽车发动机多采用水冷却。
5、汽车的内部构造及功用(讲解+图片)最好了
汽车的基本构造
汽车一般由发动机、底盘、车身和电气设备等四个基本部分组成。
汽车发动机:发动机是汽车的动力装置。由机体,曲柄连杆机构,配气机构,冷却系,润滑系,燃料系和点火系(柴油机没有点火系)等组成。按燃料分发动机有汽油和柴油发动机两 种;按工作方式分有二冲程和四冲程两种,一般发动机为四冲程发动机。
四冲程发动机的工作过程: 四冲程发动机是活塞往复四个行程完成一个工作循环,包括进气、压缩、作功、排气四个过程。四行程柴油机和汽油机一样经历进气、压缩、作功、排气的过程。但与汽油机的不同之处在于:汽油机是点燃,柴油机是压燃。
冷却系:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用两种冷却方式,即空气冷却和水冷却。一般汽车发动机多采用水冷却。
润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。
燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成。
化油器:是将汽油与空气以一定的比例混合为一种雾化气体的装置,这种雾化气体叫可燃混合气,及时适量供入气缸。
汽车的底盘:
传动系:主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。
离合器:其作用是使发动机的动力与传动装置平稳地接合或暂时地分离,以便于驾驶员进行汽车的起步、停车、换档等操作。
变速器:由变速器壳、变速器盖、第一轴、第二轴、中间轴、倒档轴、齿轮、轴承、操纵机构等机件构成,用于汽车变速、变输出扭矩。
行驶系:由车架、车桥、悬架和车轮等部分组成。它的基本功用是支持全车质量并保证汽车的行驶。
钢板弹簧与减震器:钢板弹簧的作用是使车架和车身与车轮或车桥之间保持弹性联系。减震器的作用是当汽车受到震动冲击时使震动得到缓和。减震器与钢板弹簧并联使用。
转向系:由方向盘、转向器、转向节、转向节臂、横拉杆、直拉杆等组成,作用是转向。
前轮定位:为了使汽车保持稳定直线行驶,转向轻便,减少汽车在行驶中轮胎和转向机件的磨损,前轮、转向主销、前轴三者之间的安装具有一定的相对位置,这就叫“前轮定位”。 它包括主销后倾、产销内倾、前轮前束。前束值是指两前轮的前边缘距离小于后边缘距离的差值。
6、谁能给我讲解一下汽车的工作原理,谢谢
这个问题太大了,我要分三次回答你才行:
介绍汽车的一般知识
--------------------------------------------------------------------------------
目 录
一、汽车的主要结构参数和性能参数
二、发动机基本参数详解
三、何为“欧I和II”标准
四、多 气 门 发 动 机
五、新 车 磨 合
六、汽车安全的探索ABS ASR ESP
七、前后轮驱动汽车的优缺点
八、自动变速器执行机构的结构与原理
九、四 轮 定 位 的 作 用
十、跑 车
十一、家用汽车与家用轿车
十二、汽车的动力性与经济性
十三、国际惯例上什么样的车是豪华轿车
十四、三厢车两厢车的区别和划分
一、汽车的主要结构参数和性能参数
汽车的主要特征和技术特性随所装用的发动机类型和特性的不同,通常有以下的结构参数和性能参数。
1. 整车装备质量(kg):汽车完全装备好的质量,包括润滑油、燃料、随车工具、备胎等所有装置的质量。
2. 最大总质量(kg):汽车满载时的总质量。
3. 最大装载质量(kg):汽车在道路上行驶时的最大装载质量。
4. 最大轴载质量(kg):汽车单轴所承载的最大总质量。与道路通过性有关。
5. 车 长(mm):汽车长度方向两极端点间的距离。
6. 车 宽(mm):汽车宽度方向两极端点间的距离。
7. 车 高(mm):汽车最高点至地面间的距离。
8. 轴 距(mm):汽车前轴中心至后轴中心的距离。
9. 轮 距(mm):同一车轿左右轮胎胎面中心线间的距离。
10. 前 悬(mm):汽车最前端至前轴中心的距离。
11. 后 悬(mm):汽车最后端至后轴中心的距离。
12. 最小离地间隙(mm):汽车满载时,最低点至地面的距离。
13. 接近角(°):汽车前端突出点向前轮引的切线与地面的夹角。
14. 离去角(°):汽车后端突出点向后轮引的切线与地面的夹角。
15. 转弯半径(mm):汽车转向时,汽车外侧转向轮的中心平面在车辆支承平 面上的轨迹圆半径。转向盘转到极限位置时的转弯半径为最小转弯半径。
16. 最高车速(km/h):汽车在平直道路上行驶时能达到的最大速度。
17. 最大爬坡度(%):汽车满载时的最大爬坡能力。
18. 平均燃料消耗量(L/100km):汽车在道路上行驶时每百公里平均燃料消耗量。
19. 车轮数和驱动轮数(n×m):车轮数以轮毂数为计量依据,n代表汽车的车轮总数,m代表驱动轮数。汽车发动机的基本参数包括发动机缸数,气缸的排列形式,气门,排量,最高输出功率,最大扭矩。
缸数:汽车发动机常用缸数有3、4、5、6、8缸。排量1升以下的发动机常用3缸,1--2.5升一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。
气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,V形即气缸分四列错开角度布置,形体紧凑,V形发动机长度和高度尺寸小,布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。
气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。
排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于(L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。
最高输出功率:最高输出功率一般用马(PS)或千瓦(KW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率同时每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。
最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。当然,在选择的同时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。尽量做到经济、合理选配发动机。
二、发动机基本参数详解
缸数:汽车发动机常用缸数有3、4、5、6、8、10、12缸。排量1升以下的发动机常用三缸,1~2.5升一般为四缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。
气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的,过去也有过直列8缸发动机。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。一般1升以下的汽油机多采用3缸直列1~2.5升汽油机多采用直列4缸,有的四轮驱动汽车采用直列6缸,因为其宽度小,可以在谤边布置增压器等设施。直列6缸的动平衡较好,振动相对较小,所以也为一些中、高极轿车采用,如老上海轿车。
6~12缸发动机一般采用V形排列,其中V10发动机主要装在赛车上。V形发动机长度和高度尺寸小,布置起来非常方便,而且一般认为V形发动机是比较高级的发动机,也成为轿车级别的标志之一。V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。大众公司近来开发出W型发动机,有W8和W12两种,即气缸分四列错开角度布置,形体紧凑。
气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。
排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于(L)来表示。
发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。对轿车来说,排量只是一个比较重要的技术参数,它说明汽车的大致功率、装备和价格水平,但是在中国轿车发动机排量却具有了其它的意义。
最高输出功率:最高输出功率一般用马(PS)或千瓦(KW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率同时每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。
最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降
三、何为“欧I和II”标准
近年来,汽车的排放是否符合排放标准已成为人们关心的热点话题之一。自2001年9月1日起,国家禁止生产、销售化油器轿车,更使这个热点话题升温。在涉及排放标准时,在有关规定和文章中经常出现“欧I”、“欧II”标准的提法,那么何为“欧I”、“欧II”标准呢?
据有关资料介绍,“欧I”、“欧II”是欧洲I号标准和欧洲II号标准的简称。欧洲标准属于一个专业的技术范畴,它是欧洲经济共同体委员会91/441/EEC制订的统一指令,涵盖了不同类型汽车排放的有关规定。
现以设计乘员数不超过6人(含驾驶员)、总质量不超过2.5吨的汽车为例,在1999年1月1日到2003—12月31日期间,必须达到的排放极限值为:一氧化碳不超过3.16克/公里,碳氢化合物不超过1.13克/公里;另外,柴油车排放的颗粒物不超过0.18克/公里,耐久性为5万公里。这就是欧洲I号标准中的有关规定。在2004年1月1日以后,要求这类汽油车排放的一氧化碳不超过2.2克/公里,碳氢化合物不超过0.5克/公里;柴油车排放的一氧化碳不超过1.0克/公里,碳氢化合物不超过0.7克/公里,颗粒物不超过0.08克/公里。这就是欧洲II号标准的有关规定。
四、多 气 门 发 动 机
1886年1月29日,德国人卡尔•本茨将自己研制的四冲单缸燃油发动机装上了一辆三轮的车子并获得专利权,世界从这一天开始才真正有了汽车。可以说,是发动机创造了汽车。发动机的基本构造(如图)是由气缸1、活塞2、连杆3、曲轴4等主要机件组成,每一个气缸至少有两个气门,一个进气门(蓝色)和一个排气门(橙色)。
气门装置是发动机配气机构的一个组成部分,在发动机工作起非常重要的作用。燃油发动机的工作运转由进气,压缩,作功和排气四个工作过程组成。要使发动机连续运转就必须使这四个工作过程周而复始,顺序定时地循环工作。
其中的两个工作过程,进气和排气过程,需要依K发动机的配气机构准确地按照各气缸的工作顺序输送可燃混合气(汽油发动机)或新鲜空气(柴油发动机),以及排出燃烧后的废气。另外的两个工作过程,压缩和作功过程,则必须隔绝气缸燃烧室与外界进排气通道,不让气体外泄以保证发动机正常地工作。负责上述工作的机件就是配气机构中的气门。它好比人的呼吸器官,吸进呼出,缺它不可。随着技术的发展,汽车发动机的转速已经越来越高,现代轿车发动机的转速一般可达每分钟5500转以上,完成四个工作过程只需0.005秒时间,传统的两气门已经不能胜任在这么短促的时间内完成换气工作,限制了发动机性能的提高。解决这个问题的方法只能是扩大气体出入的空间。换句话就是用空间换取时间。多气门技术是解决问题的最好方法,直至80年代推广多气门技术才使发动机的整体质量有了一次质的飞跃。
多气门发动机是指每一个气缸的气门数目超过两个,即两个进气门和一个排气门的三气门式;两个进气门和两个排气门的四气门式;三个进气门和两个排气门的五气门式。目前轿车上的多气门发动机多是四气门式的。四缸发动机有16个气门,6气缸发动机有24个气门,8气缸发动机就有32个气门。例如日本凌志LS400型轿车的发动机就是8缸32个气门。增加了气门数目就要增加相应的配气机构装置,构造比较复杂,一般由两支顶置式凸轮轴来控制排列在气缸燃烧室中心线两侧的气门。气门布置在气缸燃烧室中心两侧倾斜的位置上,是为了尽量扩大气门头的直径,加大气流通过面积,改善换气性能,形成一个火花塞位于中央的紧凑型燃烧室,有利于混合气的迅速燃烧。
有人提出疑问,既然气门多好,为什么见不到一缸6气门以上的发动机?热力学有一个叫“帘区”的概念,指气门的园周乘以气门的升程,即气门开启的空间。“帘区”越大说明气门开启的空间越大,进气量也就越大。以奥迪100型轿车的发动机为例,它的四气门“帘区”值比两气门的“帘区”值,在进气状态时要大一半,在排气状态时要大百分之七十。当然,每一个事物都有它的一定适用范围,并不是说气门越多“帘区”值就越大,据专家计算当每个气缸的气门增加到六个时,“帘区”值反而会下降了,而且气门越多机构越复杂,成本就越大。因此,目前轿车的多气门燃油发动机的每个气缸的气门数目都是三至五个,其中又以四个气门最为普遍。
以汽油发动机为例,多气门发动机与传统的两气门发动机比较,前者能吸进更多的空气来混合燃油燃烧作功,节省燃油,更快地排出废气,排放污染少,能提高发动机的功率和降低噪音的优点,符合优化环境和节省能源的发展方向,所以多气门技术能迅速推广开来。
随着技术上的不断改进,多气门燃气发动机的这种技术缺陷也逐步克服了。现在,全世界几乎所有的中高级轿车都装备多气门燃油发动机。
五、新 车 磨 合
关于新车磨合的话题已经谈论得太多了!不管有车的、还是没车的,只要是对汽车有所留意的,都知道新车有一个磨合阶段。对这个新车磨合,许多人不明白到底在磨合什么,有许多人认为只要是相对运动的零部件都有一个磨合的过程,更有人不必要地对新车磨合增添了许多注意事项。因此,许多人在这磨合期间要么过分地小心翼翼,要么在注意的同时又不自觉地在违背磨合要求。这里,我们就来讨论:新车到底在磨合什么?磨合阶段除了正常使用和保养外,还有哪些需要特别注意的事项?
新车投入使用的初期称为汽车的磨合阶段。各个厂家都向用户建议了一段磨合里程,一般为1000—2000公里、也有的车型为2000—3000公里。
在这磨合阶段,人们自然会认为发动机内的轴和轴承、变速箱、离合器、刹车组件和驱动轴等运动部件都需要磨合,这显然不能说“错”,但也不能算“对”,因为这些零部件之间的“磨”是一定的,而“合”实在谈不上。根据现在的机械设计、加工工艺和装配技术,这些零部件已经没有必要要经过“磨”才能使它们更好地配合和工作。那么,到底在磨合什么?这里的磨合是指发动机内部的活塞环和气缸壁之间的配合!
在发动机中。由于气缸里的温度和压力都非常高,高速运动的活塞不可能通过与气缸壁直接接触来起到密封作用,两者之间有一个活动间隙,而密封的实现则由活塞环来保证。活塞环通常由气环和油环组成,顾名思义,气环用来封气(防止汽缸内的混合气或者废气进入曲轴箱,以免发动机功率下降、并且防止对机油造成污染),油环用来封油(因为曲轴会将曲轴箱内的机油甩到气缸壁上,油环的作用是刮去这些机油。不让机油进入燃烧室而造成烧机油现象)。
从上面的介绍中要注意两个要点:1)发动机在工作中需要活塞环来建立缸压;2)活塞环是磨合的关键部件。因此,对活塞环来说,无论在“磨合”期,还是在以后的“磨损”期,它都必须密封气缸壁与活塞之间的缝隙,这样,活塞环的外径需要略大于缸径,而开口的作用是既能便于装配、又能随着磨损自动微调直径。在新的发动机中,装配在一起的不同直径的活塞环和气缸,在圆度方面会有微小的差别,加上各自尺寸上的加工误差,使二者的接触面产生间隙。对高压气缸而言,这个间隙的影响着实不小!
新车出厂,发动机的活塞环和气缸壁都没有经过磨合,接触面存在着间隙,使气缸内的压力达不到设计要求,影响燃油的燃烧,发动机可能因此动力不足、工作欠佳;经过几千公里的磨合,活塞环和气缸壁渐渐地有了极佳的吻合,使缸压达到了设计值,发动机进入了最佳的工作状态。这也就是为什么有人说:磨合期后,发动机的总体感觉会好些,油耗也有所改善!大修后的发动机有磨合阶段,也是出自同样的道理。
如何正确地使用和保养车辆,这里面有许多的内容,开车的人大多都知道,比如:一般不要超载;不要拖挂或牵引其它车辆或设备;要根据用户说明书选用规定标号的燃油和规定型号的机油;经常检查齿轮油(或者自动变速箱用液)、制动液、方向助力液、离合器助力液、防冻液等的情况并按规定更换(或添加);检查轮胎气压;经常注意各个零部件的紧固情况。对发动机机油的更换时间,公磨合阶段会稍有不同,因为气缸密封不是很好,未燃烧的混和气和燃烧后的废气有可能进入曲轴箱内。从而使机油变质加快,所以,第—次换机油不妨早些。
根据上面对磨合的介绍,有两个注意事项是和磨合直接相关的:
1.避免高速
出于薄片环状的活塞环与气缸壁接触有间隙,实际接触的只是一部分区段和点。在磨合中,发动机过高的转速自然就增加了拉毛、拉伤气缸够和损坏活塞环的可能性,所以,一般厂家都会建议新车限速在80—90公里/小时。在80—90公里/小时的车速段内,无论足手动挡汽车还是自动挡汽车,按照正常换挡要求成自动速度切换点,发动机在这一车速段内的转速在2500转/分左右,最高也不会超出3000转/分。这正是限车速的关键和实质:限制车速其实是在限制发动机的转速!“在磨合期内不要人为地给发动机加高速”,这—点,希望有些新手引起注意。也有的人以为“只要车速不超过建议限速,发动机的高速运转是无所谓的”,事实上这正好与限速的建议相违背。
同时,“在低车速挂高挡”也是非常忌讳的,因动力不足造成经常性的挫车一样有拉毛、拉伤气缸壁和损坏活塞环的可能性。还有,不要长时间地保持在某一车速上,不管是高速还是低速。顺便说一下换挡,虽然这不属于磨合的内容。换挡以汽车速度为难,而不是发动机的转速,以“20km/h换二挡、40km/h换三挡、60km/h换四挡、70km/h换五挡”为最佳,各相应的车速段都是每个挡他的最佳设计效率区段。“低速挂高档省油”的说法并不正确,因为不能在可能损害发动机的情况下去省油,不然。省下的汽油钱还不够补偿发动机工况不良而造成使用寿命缩短的损失。
2.平缓地驾驶
在磨合阶段,平缓驾驶的要求对所有运动的零部件都是有好处的,尤其是对磨合中的气缸。要避免一个“急”字,不要急加速,更要避免在最先的几百公里内急刹车。
讲到这里,不知道人家是否清楚了?其实,只要正常和正确地驾驶,就能顺利度过磨合阶段。况且,随着机械制造技术的提高,新车发动机的活塞环和气缸壁已经有了良好的吻合,新车磨合不再是“强制”性的,而是一个“建议”!当然,汽车对个人来说,算是一大财产,最好还是按照“建议”来善待自己的爱车吧。
六、汽车安全的探索ABS ASR ESP
当ABS(防抱死制动系统)刚刚问世时,人们纷纷为其卓越的安全性惊叹不已,有ABS装置的汽车不但说明其安全性能出类拔萃,而且档次也相当高级。而今天,安装ABS的轿车已经相当普遍,经济型车也安装有ABS。并且随着对汽车安全性能的要求越来越高,一些更为先进的、保护范围更加广泛的安全装置相继问世了,其中ASR(驱动防滑系统,又称牵引力控制系统)和ESP(电控行驶平稳系统)最具代表性,它们的诞生使汽车的安全性能得到了进一步提高。
ASR:驱动防滑系统(或称牵引力控制系统)
汽车的牵引力控制可以通过减少节气门开度来降低发动机功率或者由制动器控制和轮打滑来达到目的,装有ASR的汽车综合这两种方法来工作,也就是ABS/ASR。
ASR的作用是当汽车加速时将滑动军控制在一定的范围内,从而防止驱动轮快速滑动。它的功能一是提高牵引力;二是保持汽车的行驶稳定性。行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如果是后驱动的车辆容易甩尾,如果是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。
在装有ASR的车上,从油门踏板到汽油机节气门(柴油机喷油泵操作杆)之间的机械连接被电控油门装置所代替。当传感器将油门踏板的位置及轮速信号送到单元(CPU)时,控制单元就会产生控制电压信号,伺服电机依此信号重新调整节气门的位置(或者柴油机操纵杆的位置),然后将该位置信号反馈至控制单元,以便及时调整制动器。
ESP:电控行驶平稳系统其英文全称是Electronic StabiltyProgram,它是ABS和ASR两种系统功能的延伸。因此,ESP称得上是当前汽车防滑装置的最高级形式。
ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指守。有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上.