导航:首页 > 车辆百科 > 车辆路径

车辆路径

发布时间:2020-08-02 01:25:43

1、急求车辆路径问题遗传算法的matlab代码!!!!

function [path,lmin]=ga(data,d)  %data为点集,d为距离矩阵,即赋权图
tic
%======================
sj0=data;%开环最短路线
%=================================
% sj0=[data;data(1,:)]; %闭环最短路线
%=========================
x=sj0(:,1);y=sj0(:,2);
N=length(x);
%=========================
% d(N,:)=d(1,:);%闭环最短路线
% d(:,N)=d(:,1);%距离矩阵d    
%======================
L=N;   %sj0的长度
w=800;dai=1000;
%通过改良圈算法选取优良父代A
for k=1:w
c=randperm(L-2);
c1=[1,c+1,L];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
end
end
end
end
J(k,c1)=1:L;
end
J=J/L;
J(:,1)=0;J(:,L)=1;
rand('state',sum(clock));
%遗传算法实现过程
A=J;
for k=1:dai %产生0~1 间随机数列进行编码
B=A;
c=randperm(w);
%交配产生子代B
for i=1:2:w
F=2+floor(100*rand(1));
temp=B(c(i),F:L);
B(c(i),F:L)=B(c(i+1),F:L);
B(c(i+1),F:L)=temp;
end; 
%变异产生子代C
by=find(rand(1,w)<0.1);
if length(by)==0
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
bw=floor(1+fix(rand(1,3)*N));      %产生1-N的3个随机数
bw=sort(bw);
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:L]);
end
G=[A;B;C];
TL=size(G,1);
%在父代和子代中选择优良品种作为新的父代
[dd,IX]=sort(G,2);
temp=[];
temp(1:TL)=0;
for j=1:TL
for i=1:L-1
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1));
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:);
end
path=IX(IZ(1),:)
% for i=1:length(path)
% path(i)=path(i)-1;
% end
% path=path(2:end-1);
lmin=0;l=0;
for j=1:(length(path)-1)
    t1=path(j);t2=path(j+1);
    l=d(t1,t2);
    lmin=lmin+l;
end
xx=sj0(path,1);yy=sj0(path,2);
plot(xx,yy,'r-o');
axis equal
toc

代码亲自前几天还用来着,绝对可用

2、汽车路径问题

车辆路线问题(VRP)最早是由Dantzig和Ramser于1959年首次提出,它是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物,由一个车队负责分送货物,组织适当的行车路线,目标是使得客户的需求得到满足,并能在一定的约束下,达到诸如路程最短、成本最小、耗费时间最少等目的Paolo Toth,Daniele Vigo。THE VEHICLE ROUTING PROBLEM[M]。Society for Instrial and Applied Mathematics philadephia.2002。 在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同[2]。Bodin[4]和Solomon[5]分别对VRP及其变形问题和VRPTW问题作了较详细的综述。生产实际中许多问题都可以归结为VRPTW来处理, 如钢铁厂编制热轧带钢轧制计划问题实际上就是一个VRPTW问题。一些服务性行业中也普遍存在这样的问题, 如邮政投递,飞机、火车及公共汽车的调度等。自从Savelsbergh[6]证明了VRPTW是一个NP难问题之后, 对其算法的研究就主要集中到各种启发式算法上。遗传算法、禁忌搜索法和模拟退火法等智能化启发式算法的出现为求解VRPTW问题提供了新的工具。Thangiah[7]和Joe[8]都曾应用遗传算法求解VRPTW问题, 前者的目标是使总的服务成本最小, 而后者的目标有两个, 首先是使用最少的车辆, 其次是在使用最少车辆的前提下使总成本最小[3]。时间窗车辆路径问题的求解方法[2]含时窗限制之车辆途程问题(VRPTW)相对于车辆途程问题(VRP),必须额外考虑到运送时间与时间窗口,其主要的原因来自顾客有服务时间的最后期限和最早开始服务时间的限制。故在此限制条件之下,原本VRP问题除了空间方面的路径(Routing)考虑之外,还必须要加上时间上的排程(Scheling)考虑,同时由于场站也有时间窗的限制,也间接造成路径长度的限制,由此可知VRPTW的总巡行成本不仅包含运送成本,还需要考虑时间成本,以及未在时间窗限制内送达的处罚成本。因此,若要得到一个好的解答,时间和空间(Temporal andSpatial)问题的探讨是非常重要的。由于VRPTW比VRP问题多考虑了一样时窗的因素,因此在解法上较VRP问题更为复杂,而根据Taillard(1997)等人的分类,求解VRPTW的方法可以分为六种,分述如下。1、以分枝界限法求算之精确解法(Exact Algorithm Based on Branch-and-BoundTechniques):Kolen(1987)利用这种方式可以求得精确解,但是只能解决六至十五个节点的问题,因此求解的范围过小,仅适用于小型问题。2、途程建构启发式算法(Route Construction Heuristics):在一问题中,以某节点选择原则或是路线安排原则,将需求点一一纳入途程路线的解法。如Soloman(1987)的循序建构法(Sequential Insertion Heuristics)。3、途程改善启发式算法(Route Improvement Heuristics):先决定一个可行途程,也就是一个起始解,之后对这个起始解一直做改善,直到不能改善为止。而常见的是节线交换法(Edge Exchange Procere),如Lin(1965)所提出的K-Optimal,以及Potvin与Rousseau(1993)提出一考虑旅行方向的交换算法。4、合成启发式算法(Composite Heuristics):此种解法混合了途程建构启发式算法与途程改善启发式算法,如Russell(1995)所提出的Hybrid Heuristics便是混合了Potvin与Rousseau(1993)所提出的平行插入法,并在之中加入路线改善法的合成启发式算法;Roberto(2000)也提出的属于平行插入法与内部交换改善法的合成启发式解法来求解VRPTW的问题。5、依据最佳化之启发式算法(Optimization-Based Heuristics):如Koskosidis(1992)等人利用混合整数规划模块,再透过启发式算法,将原始问题分解成指派/分群的子问题的一系列的巡行以及排程问题。6、通用启发式算法(Metaheuristics):传统区域搜寻方法的最佳解常因起始解的特性或搜寻方法的限制,而只能获得局部最佳解,为了改善此一缺点,近年来在此领域有重大发展,是新一代的启发式解法,包含禁忌法(Tabu Search)、模拟退火法(Simulated Annealing)、遗传算法(Genetic Algorithm)和门坎接受法(Threshold Accepting)等,可以有效解决局部最佳化的困扰。
请采纳。

3、车辆路径问题的目录

list of contributors
preface
1 an overview of vehicle routing problems
p. toth, d. vigo
1.1 introction
1.2 problem definition and basic notation
1.2.1 capacitated and distance-constrained vrp
1.2.2 vrp with time windows
1.2.3 vrp with backhauls
1.2.4 vrp with pickup and delivery
1.3 basic models for the vrp
1.3.1 vehicle flow models
1.3.2 extensions of vehicle flow models
1.3.3 commodity flow models
1.3.4 set-partitioning models
1.4 test instances for the cvrp and other vrps
bibliography
Ⅰ capacitated vehicle routing problem
2 branch-and-bound algorithms for the capacitated vrp
p. toth, d. vigo
2.1 introction
2.2 basic relaxations
2.2.1 bounds based on assignment and matching
2.2.2 bounds based on arborescences and trees
2.2.3 comparison of the basic relaxations
2.3 better relaxations
2.3.1 additive bounds for acvrp
2.3.2 further lower bounds for acvrp
2.3.3 lagrangian lower bounds for scvrp
2.3.4 lower bounds from a set-partitioning formulation
2.3.5 comparison of the improved lower bounds
2.4 structure of the branch-and-bound algorithms for cvrp
2.4.1 branching schemes and search strategies
2.4.2 rection, dominance rules, and other features
2.4.3 performance of the branch-and-bound algorithms
2.5 distance-constrained vrp
bibliography
3 branch-and-cut algorithms for the capacitated vrp
d. naddef, g. rinami
3.1 introction and two-index flow model
3.2 branch-and-cut
3.3 polyhedral studies
3.3.1 capacity constraints
3.3.2 generalized capacity constraints
3.3.3 framed capacity constraints
3.3.4 valid inequalities from stsp
3.3.5 valid inequalities combining bin packing and stsp
3.3.6 valid inequalities from the stable set problem
3.4 separation proceres
3.4.1 exact separation of capacity constraints
3.4.2 heuristics for capacity and related constraints
3.4.3 stsp constraints
3.5 branching strategies
3.6 computational results
3.7 conclusions
bibliography
4 set-covering-based algorithms for the capacitated vrp
j. bramel, d. simchi-levi
4.1 introction
4.2 solving the linear programming relaxation of p
4.3 set-covering-based solution methods
4.3.1 branch-and-bound algorithm for problem cg
4.3.2 polyhedral branch-and-bound algorithm
4.3.3 pseudo-polynomial lower bound on cmin
4.3.4 solving pa via al-ascent and branch-and-bound
4.4 solving the set-covering integer program
4.4.1 a cutting plane method
4.4.2 branch-and-price
4.4.3 additional comments on computational approaches
4.5 computational results
4.6 effectiveness of the set-covering formulation
4.6.1 worst-case analysis
4.6.2 average-case analysis
bibliography
5 classical heuristics for the capacitated vrp
g. laporte, f. semet
5.1 introction
5.2 constructive methods
5.2.1 clarke and wright savings algorithm
5.2.2 enhancements of the clarke and wright algorithm
5.2.3 matching-based savings algorithms
5.2.4 sequential insertion heuristics
5.3 two-phase methods
5.3.1 elementary clustering methods
5.3.2 truncated branch-and-bound
5.3.3 petal algorithms
5.3.4 route-first, cluster-second methods
5.4 improvement heuristics
5.4.1 single-route improvements
5.4.2 multiroute improvements
5.5 conclusions
bibliography
6 metaheuristics for the capacitated vrp
m. gendreau, g. laporte, j y. potvin
6.1 introction
6.2 simulated annealing
6.2.1 two early simulated annealing algorithms
6.2.2 osman's simulated annealing algorithms
6.2.3 van breedam's experiments
6.3 deterministic annealing
6.4 tabu search
6.4.1 two early tabu search algorithms
6.4.2 osman's tabu search algorithm
6.4.3 taburoute
6.4.4 taillard's algorithm
6.4.5 xu and kelly's algorithm
6.4.6 rego and roucairol's algorithms
6.4.7 barbarosoglu and ozgur's algorithm
6.4.8 adaptive memory procere of rochat and taillard
6.4.9 granular tabu search of toth and vigo
6.4.10 computational comparison
6.5 genetic algorithms
6.5.1 simple genetic algorithm
6.5.2 application to sequencing problems
6.5.3 application to the vrp
6.6 ant algorithms
6.7 neural networks
6.8 conclusions
bibliography
Ⅱ important variants of the vehicle routing problem
7 vrp with time windows
j.-f. cordeau, g. desaulniers, j. desrosiers, m. m. solomon, e soumis
7. i introction
7.2 problem formulation
7.2.1 formulation
7.2.2 network lower bound
7.2.3 linear programming lower bound
7.2.4 algorithms
7.3 upper bounds: heuristic approaches
7.3.1 route construction
7.3.2 route improvement
7.3.3 composite heuristics
7.3.4 metaheuristics
7.3.5 parallel implementations
7.3.6 optimization-based heuristics
7.3.7 asymptotically optimal heuristics
7.4 lower bounds from decomposition approaches
7.4.1 lagrangian relaxation
7.4.2 capacity and time-constrained shortest-path problem.
7.4.3 variable splitting
7.4.4 column generation
7.4.5 set-partitioning formulation
7.4.6 lower bound
7.4.7 commodity aggregation
7.4.8 hybrid approach
7.5 integer solutions
7.5.1 binary decisions on arc flow variables
7.5.2 integer decisions on arc flow variables
7.5.3 binary decisions on path flow variables
7.5.4 subtour elimination and 2-path cuts
7.5.5 k-path cuts and parallelism
7.5.6 integer decisions on (fractional and integer) time variables
7.6 special cases
7.6.1 multiple tsp with time windows
7.6.2 vrp with backhauls and time windows
7.7 extensions
7.7.1 heterogeneous fleet, multiple-depot, and initial conditions
7.7.2 fleet size
7.7.3 multiple time windows
7.7.4 soft time windows
7.7.5 time- and load-dependent costs
7.7.6 driver considerations
7.8 computational results for vrptw.
7.9 conclusions
bibliography
8 vrp with backhauls
p. toth, d. vigo
8.1 introction
8.1.1 benchmark instances
8.2 integer linear programming models
8.2.1 formulation of toth and vigo
8.2.2 formulation of mingozzi, giorgi, and baldacci
8.3 relaxations
8.3.1 relaxation obtained by dropping the cccs
8.3.2 relaxation based on projection
8.3.3 lagrangian relaxation
8.3.4 overall additive lower bound
8.3.5 relaxation based on the set-partitioning model
8.4 exact algorithms
8.4. i algorithm of toth and vigo
8.4.2 algorithm of mingozzi, giorgi, and baldacci
8.4.3 computational results for the exact algorithms
8.5 heuristic algorithms
8.5.1 algorithm of deif and bodin
8.5.2 algorithms of goetschalckx and jacobs-blecha
8.5.3 algorithm of toth and vigo
8.5.4 computational results for the heuristics
bibliography
9 vrp with pickup and delivery
g. desaulniers, j. desrosiers, a. erdmann, m. m. solomon, f. soumis
9.1 introction
9.2 mathematical formulation
9.2.1 construction of the networks
9.2.2 formulation
9.2.3 service quality
9.2.4 rection of the network size
9.3 heuristics
9.3.1 construction and improvement
9.3.2 clustering algorithms
9.3.3 metaheuristics
9.3.4 neural network heuristics
9.3.5 theoretical analysis of algorithms
9.4 optimization-based approaches
9.4.1 single vehicle cases
9.4.2 multiple vehicle cases
9.5 applications
9.6 computational results
9.7 conclusions
bibliography
Ⅲ applications and case studies
10 routing vehicles in the real world: applications in the solid waste,
beverage, food, dairy, and newspaper instries
b. l. golden, a. a. assad, e. a. wasil
10.1 introction
10.2 computerized vehicle routing in the solid waste instry
10.2.1 history
10.2.2 background
10.2.3 commercial collection
10.2.4 residential collection
10.2.5 case studies
10.2.6 roll-on-roll-off
10.2.7 further remarks
10.3 vehicle routing in the beverage, food, and dairy instries
10.3.1 introction
10.3.2 beverage instry
10.3.3 food instry
10.3.4 dairy instry
10.4 distribution and routing in the newspaper instry
10.4.1 instry background
10.4.2 newspaper distribution problem
10.4.3 vehicle routing algorithms for ndp
10.4.4 three case studies
10.4.5 further remarks
10.5 conclusions
bibliography
11 capacitated arc routing problem with vehicle-site dependencies:
the philadelphia experience
j. sniezek, l. bodin, l. levy, m. ball
11.1 introction
11.2 networks, assumptions, and goals of the carp-vsd
11.2.1 travel network
11.2.2 service network
11.2.3 vehicle classes
11.2.4 travel network and service network for a vehicle class
11.2.5 vehicle preference list
11.2.6 other assumptions
11.2.7 goals and constraints of the carp-vsd
11.3 vehicle decomposition algorithm (vda)
11.3.1 step a. create and verify vehicle class networks
11.3.2 step b. estimate total work and determine initial fleet mix
11.3.3 step c. partition the service network
11.3.4 step d. determine travel path and balance the partitions
11.3.5 step e. revise estimate of total work and adjust fleet mix
11.4 implementation of the vda in philadelphia
11.5 enhancements and extensions
bibliography
12 inventory routing in practice
ann m. campbell, lloyd w. clarke, martin w.p. savelsbergh
12.1 introction
12.2 problem definition
12.3 literature review
12.4 solution approach
12.4.1 phase i: integer programming model
12.4.2 phase i: solving the integer programming model
12.4.3 phase ii: scheling
12.5 computational experience
12.5.1 instances
12.5.2 solution quality
12.5.3 alternate heuristic
12.5.4 computational experiments
12.6 conclusion
bibliography
13 routing under uncertainty: an application in the scheling of field
service engineers
e. hadjiconstantinou, d. roberts
13.1 introction
13.2 vrpsst with variable costs of recourse
13.3 literature review
13.3.1 vrpst
13.3.2 vrpsd
13.4 stochastic integer vrpsst formulation
13.4.1 first-stage problem
13.4.2 second-stage problem
13.5 paired tree search algorithm (ptsa)
13.5.1 linked trees
13.5.2 lower bounds
13.5.3 computational implementation
13.6 applied maintenance scheling problem
13.6.1 maintenance scheling system in practice
13.6.2 stochastic problem setting
13.7 modeling the applied problem as a vrpsst
13.8 model input
13.8.1 job locations and the road network
13.8.2 service times
13.9 model output: computational considerations
13.9.1 framework for the analysis of results
13.9.2 reoptimization
13.10 example scenario
13.11 overall computational results
13.12 conclusion
bibliography
14 evolution of microcomputer-based vehicle routing software:
case studies in the united states
e. k. baker
14.1 introction
14.2 definition of the vrp
14.2.1 customer specification
14.2.2 proct specification
14.2.3 vehicle specification
14.3 algorithms
14.4 future trends in vehicle routing software
14.5 summary and conclusions
bibliography
index

4、什么是带时间窗口的车辆路径问题?

车辆路线问题(VRP)最早是由Dantzig和Ramser于1959年首次提出,它是指一定数量的客户,各自有不同数量的货物需求,配送中心向客户提供货物,由一个车队负责分送货物,组织适当的行车路线,目标是使得客户的需求得到满足,并能在一定的约束下,达到诸如路程最短、成本最小、耗费时间最少等目的Paolo Toth,Daniele Vigo。THE VEHICLE ROUTING PROBLEM[M]。Society for Instrial and Applied Mathematics philadephia.2002。 在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同[2]。Bodin[4]和Solomon[5]分别对VRP及其变形问题和VRPTW问题作了较详细的综述。生产实际中许多问题都可以归结为VRPTW来处理, 如钢铁厂编制热轧带钢轧制计划问题实际上就是一个VRPTW问题。一些服务性行业中也普遍存在这样的问题, 如邮政投递,飞机、火车及公共汽车的调度等。自从Savelsbergh[6]证明了VRPTW是一个NP难问题之后, 对其算法的研究就主要集中到各种启发式算法上。遗传算法、禁忌搜索法和模拟退火法等智能化启发式算法的出现为求解VRPTW问题提供了新的工具。Thangiah[7]和Joe[8]都曾应用遗传算法求解VRPTW问题, 前者的目标是使总的服务成本最小, 而后者的目标有两个, 首先是使用最少的车辆, 其次是在使用最少车辆的前提下使总成本最小[3]。时间窗车辆路径问题的求解方法[2]含时窗限制之车辆途程问题(VRPTW)相对于车辆途程问题(VRP),必须额外考虑到运送时间与时间窗口,其主要的原因来自顾客有服务时间的最后期限和最早开始服务时间的限制。故在此限制条件之下,原本VRP问题除了空间方面的路径(Routing)考虑之外,还必须要加上时间上的排程(Scheling)考虑,同时由于场站也有时间窗的限制,也间接造成路径长度的限制,由此可知VRPTW的总巡行成本不仅包含运送成本,还需要考虑时间成本,以及未在时间窗限制内送达的处罚成本。因此,若要得到一个好的解答,时间和空间(Temporal andSpatial)问题的探讨是非常重要的。由于VRPTW比VRP问题多考虑了一样时窗的因素,因此在解法上较VRP问题更为复杂,而根据Taillard(1997)等人的分类,求解VRPTW的方法可以分为六种,分述如下。1、以分枝界限法求算之精确解法(Exact Algorithm Based on Branch-and-BoundTechniques):Kolen(1987)利用这种方式可以求得精确解,但是只能解决六至十五个节点的问题,因此求解的范围过小,仅适用于小型问题。2、途程建构启发式算法(Route Construction Heuristics):在一问题中,以某节点选择原则或是路线安排原则,将需求点一一纳入途程路线的解法。如Soloman(1987)的循序建构法(Sequential Insertion Heuristics)。3、途程改善启发式算法(Route Improvement Heuristics):先决定一个可行途程,也就是一个起始解,之后对这个起始解一直做改善,直到不能改善为止。而常见的是节线交换法(Edge Exchange Procere),如Lin(1965)所提出的K-Optimal,以及Potvin与Rousseau(1993)提出一考虑旅行方向的交换算法。4、合成启发式算法(Composite Heuristics):此种解法混合了途程建构启发式算法与途程改善启发式算法,如Russell(1995)所提出的Hybrid Heuristics便是混合了Potvin与Rousseau(1993)所提出的平行插入法,并在之中加入路线改善法的合成启发式算法;Roberto(2000)也提出的属于平行插入法与内部交换改善法的合成启发式解法来求解VRPTW的问题。5、依据最佳化之启发式算法(Optimization-Based Heuristics):如Koskosidis(1992)等人利用混合整数规划模块,再透过启发式算法,将原始问题分解成指派/分群的子问题的一系列的巡行以及排程问题。6、通用启发式算法(Metaheuristics):传统区域搜寻方法的最佳解常因起始解的特性或搜寻方法的限制,而只能获得局部最佳解,为了改善此一缺点,近年来在此领域有重大发展,是新一代的启发式解法,包含禁忌法(Tabu Search)、模拟退火法(Simulated Annealing)、遗传算法(Genetic Algorithm)和门坎接受法(Threshold Accepting)等,可以有效解决局部最佳化的困扰。

5、车辆行驶路径的二义性是指?

据说是负责把信息写入通行卡里面,表示经过此段高速,这样利于出口计费。所谓“标识站”:确定行驶路径,叠加计算出费额,当路网内出现环路的时候,从入口到出口就会出现不止一条可达路径,即存 在二义性路径。由于无法预知车辆行驶了哪条路径,当然也无法唯一确定如何收 费和拆分结算,现在较常用的解决方法是使用标识站。

6、急求java代码:遗传算法解决车辆路径问题。。

把这个地址的程序http://.网络.com/question/340500887.html 中,这一句public void print(){
改成public void print(){}加一个大括号就可以运行了。

7、请教车辆路径问题

有时间窗车辆路径问题(vehicle routing problems with time windows,VRPTW) 车辆路线问题 ( VRP )最早是由 Dantzig 和 Ramser 于 1959年首次提出,它是指一定数量的客户, 各自有不同数量的货物需求, 配送中心 向客户提供货物, 由一个车队负责分送货物, 组织 适当的行车路线,目标是使得客户的 需求得到满足,并能在一定的约束下,达到诸如路程最短、 成本 最小 、耗费时间最少等目的Paolo Toth,Daniele Vigo。THE VEHICLE ROUTING PROBLEM[M]。Society for Instrial and Applied Mathematics philadephia.2002。

8、车辆路径优化

应该是有区别的,三者的侧重点不同。
运输路线优化更侧重:根据运输途径,路线的设计尽可能直线、不重复、短。

配送路线优化更侧重:根据配送点的分布,路线尽可能包囊所有的配送点。

车辆路径优化更侧重:根据车辆的运行,路线尽可能配合车辆,让车辆数量为最少,即一辆车能尽 可能地行驶在各条路线上。
仅供参考。

9、vrptw车辆路径问题中,solomon标准测试数据,带有时间窗,请问车速应该设置为多少?

车速应该为1,具体见网页链接 最后一段话里有提到行驶时间即是距离。

10、车辆路径问题代表的是哪一类的问题

汽车零部件第三方物流业的实际背景,提出了一类新的车辆路径问题,它是一种带时间窗约束的分车运输同时收发车辆路径问题(简称SVRPSPDTW).接着给出了问题的模型,并提出求解问题的启发式算法:两阶段算法.最后在改进的Solomn的算例的基础上,进行了数值试验.


与车辆路径相关的内容