1、matlab车辆识别程序
确定物体个数和中心的话,利用颜色值进行连通性分析,应该能确定一块相同颜色的区域,找到这块区域就能确定质心点了。要是还要判断形状还得先提取出每个形状的特征。
1.识别静态的整个人体较难;即使识别出来结果也不可靠,所以现在主要以手势/人脸识别为主;这是因为手和脸上面有比较独特的特征点。你说的滤波归根结底还是要找出具有灰度跳变的高频部分作为人体;这除非背景中除了人以外没有其他突出的物体;否则光凭滤波二值法检测人体是不太现实。
2 两张图片中人要是产生相对运动,检测起来就容易多了;利用帧间差分找到图像中灰度相差大的部分(你用的滤波也是一种手段);然后二值化区域连通;要是图像中没有其他移动物体计算连通区域的变动方向就是人的运动方向。
先建立起静态背景的模型(或者直接在没人的时候拍张);然后不断的与这个背景做差,原理和帧间差分一样。建议你先从典型的帧间差分例程开始下手(比如移动车辆的检测,这个比较多)。
在二值化之后加上一个区域连通的步骤;即使用膨胀或者闭运算;这样轮廓就是连续的了;用matlab的话bwlabel可以统计连通区域里面像素的个数也就是人体面积大小。质心就是横竖坐标的平均值;取所有人体点的横竖坐标分别累加;除以坐标总数得到的x和y平均值;这个就是质心了。
2、基于MATLAB的汽车牌照的识别
汽车牌照自动识别系统一般都应用在公路卡口之类的地方。
你所说的这些都是很专业的技术和一套完整的方案。
这些东西的价格是很昂贵的,一般不会轻易告诉你的。
3、求matlab车牌识别完整代码
大体思路是:先去噪,然后摆正这些字符,再朝底部和左边投影,这样可以得到每个字符的所占的行列数,做字符切割,然后用SVM做分类
4、在matlab车牌识别中[val,num]=min(sum(d(;,[k1+5;k2-5)));是什么意思?val,num分别指什么
这个是分割的部分 你基本可以理解成 寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成
5、基于matlab的车牌识别系统
基于MATLAB的卷积神经网络CNN车牌识别,这个运行就无误,值得参考。
在必过源码也有很多车牌识别的相关资料,你可以去了解一下。
6、求数字信号处理有关车牌识别的MATLAB代码
虽然我未必能帮助你解决这个问题,但是还是想说几句来帮助你。
(1)车牌照识别是属于图像处理里面的内容,MATLAB里面有图像处理工具箱可以帮助你,但是不能帮你彻底解决问题。
(2)能否无错识别肯定和图片的清晰度有关,没有任何一个软件或者代码可以保证完全识别出来,当然,在仅仅考虑图片清晰的前提下(即肉眼可以很轻松识别),还是可以保证比较高的识别率。
(3)这个问题涉及到图片的方位判断,边界提取,字符匹配 等算法,本质上不是一个代码问题,而是一个算法问题。也不局限于MATLAB来解决,GIS,C++,等软件都可以用来做。但是算法才是关键。
(4)给你一些参考文献,希望能对你有启发。
[1] 刘峡壁,贾云得. 一种字符图像线段提取及细化算法[J]. 中国图象图形学报. 2005(01): 48-53.
[2] 李文举,梁德群,崔连延,等. 一种新的面向字符分割的车牌图像预处理方法[J]. 计算机应用研究. 2004(07): 258-260.
[3] 曹建海,路长厚. 基于小波变换和DCT的字符图像特征抽取新方法[J]. 光电子•激光. 2004(04): 477-482.
[4] 付仲良,陈江平,黄书强,等. 货车图像车牌区快速定位及字符切割算法[J]. 计算机工程与设计. 2003(01): 77-79.
[5] 王建平,盛军,朱程辉. 基于小波分析的视频图像字符特征提取方法研究[J]. 微电子学与计算机. 2002(05): 51-53.
[6] 吴大勇,魏平,侯朝桢,等. 一种车牌图像中的字符快速分割与识别方法[J]. 计算机工程与应用. 2002(03): 232-233.
[7] 陈锻生,谢志鹏,刘政凯. 复杂背景下彩色图像车牌提取与字符分割技术[J]. 小型微型计算机系统. 2002(09): 1144-1148.
[8] 顾晖,程晨,梁惺彦. 利用模糊边界提取算法实现医学图像边界提取[J]. 现代计算机(专业版). 2008(01): 38-40.
[9] 罗诗途,王艳玲,罗飞路,等. 基于分形几何边界提取的图像跟踪方法[J]. 应用光学. 2006(01): 19-22.
[10] 王少霞,颜钢峰. 基于张弛法的图像边界提取算法[J]. 江南大学学报. 2005(05): 53-55.
[11] 王艳玲,张玘,罗诗途. 基于分形几何边界提取的图像跟踪方法[J]. 光电子技术与信息. 2005(06): 49-52.
[12] 付青青,冯桂. 噪声图像中边界提取方法的研究[J]. 电脑与信息技术. 2003(01): 22-25.
[13] 王晖,张基宏. 多尺度图像边界提取的小波算法与最优准则[J]. 深圳大学学报. 1997(Z1): 21-25.
7、求基于BP神经网络实现汽车牌照识别的matlab代码或者是汽车牌照识别系统(用matlab写的,有用到BP神经网络
这是基于模板匹配法的车牌识别
基于BP神经网络的车牌识别程序网上有
8、matlab车牌识别结果为什么总是错的呢?
C1gray=imread('E:/car1.jpg');subplot(231),imshow('E:/car1.jpg');title('原始图像');
Cgray=rgb2gray(C1gray);%转为灰度图像
s=strel('disk',25);%获得背景图像
Bgray=imopen(Cgray,s);
Egray=imsubtract(Cgray,Bgray);%两图相减
Fgray=imadjust(Egray,[0.3 0.5],[]);
bw22=im2bw(Fgray);%图像二值化
subplot(232);imshow(Bgray);title('背景图像');
subplot(233);imshow(Egray);title('增强黑白图像');
subplot(234);imshow(Fgray);title('增强对比度图像 ');
subplot(235);imshow(bw22);title('二值图像');
9、请问哪位高手会用matlab做车牌识别,我有几个问题想请问一下!
在做类似设计,不知这段程序对你有用否
I=imread('Car.jpg');
[y,x,z]=size(I);
myI=double(I);
%%%%%%%%%%% RGB to HSI %%%%%%%%
tic % 测定算法执行的时间,开始计时
%%%%%%%%%%% 统计分析 %%%%%%%%%%%%%%%
%%%%%%%% Y 方向 %%%%%%%%%%
Blue_y=zeros(y,1);
for i=1:y
for j=1:x
if((myI(i,j,1)<=30)&&((myI(i,j,2)<=62)&&(myI(i,j,2)>=51))&&((myI(i,j,3)<=142)&&(myI(i,j,3)>=119)))
% 蓝色RGB的灰度范围
Blue_y(i,1)= Blue_y(i,1)+1; % 蓝色象素点统计
end
end
end
[temp MaxY]=max(Blue_y); % Y方向车牌区域确定
PY1=MaxY;
while ((Blue_y(PY1,1)>=5)&&(PY1>1))
PY1=PY1-1;
end
PY2=MaxY;
while ((Blue_y(PY2,1)>=5)&&(PY2<y))
PY2=PY2+1;
end
IY=I(PY1:PY2,:,:);
%%%%%%%% X 方向 %%%%%%%%%%
Blue_x=zeros(1,x); % 进一步确定X方向的车牌区域
for j=1:x
for i=PY1:PY2
if((myI(i,j,1)<=30)&&((myI(i,j,2)<=62)&&(myI(i,j,2)>=51))&&((myI(i,j,3)<=142)&&(myI(i,j,3)>=119)))
Blue_x(1,j)= Blue_x(1,j)+1;
end
end
end
PX1=1;
while ((Blue_x(1,PX1)<3)&&(PX1<x))
PX1=PX1+1;
end
PX2=x;
while ((Blue_x(1,PX2)<3)&&(PX2>PX1))
PX2=PX2-1;
end
PX1=PX1-2; % 对车牌区域的修正
PX2=PX2+2;
Plate=I(PY1:PY2,PX1-2:PX2,:);
t=toc % 读取计时
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure,imshow(I);
figure,plot(Blue_y);grid
figure,plot(Blue_x);grid
figure,imshow(IY);
figure,imshow(Plate);
10、急求用BP神经网络实现车牌识别的MATLAB程序代码
车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号,目前的技术水平为字母和数字的识别率可达到96%,汉字的识别率可达到95%。
附件为基于matlab的车牌识别的源程序(可以实现),其中包括车牌定位,车牌矫正,字符分割,字符识别4部分。还有已训练好的BP神经网络用于字符识别。