1、我在做一个车辆路径问题,用遗传算法的,不会MATLAB编程,有人能帮我一下吗?
% Optimizing a function using Simple Genetic Algorithm with elitist preserved
%Max f(x1,x2)=10-x1*x1-x2*x2+x1*x2; -2.0480<=x1,x2<=2.0480
clc;clear all;
format long;%Set the data format(设定数据显示格式)
%parameters Initialization (初始化参数)
T=100;% Generation( 仿真代数)
N=80;% Population size ( 群体规模)
pm=0.05;pc=0.8;%Crossover and mutation probability(交叉变异概率)
umax=2.048;umin=-2.048;%Parameter range(参数取值范围)
L=10;%Single parameter string length, the total coding length is 2L(单个参数字串长度,总编码长度2L)
bval=round(rand(N,2*L));%Population Initialization(初始种群)
bestv=-inf;%Optimal fitness Initialization(最优适应度初值)
%Iteration stsar(迭代开始)
for ii=1:T
%Decoding, and the fitness calculation(解码,计算适应度)
for i=1:N
y1=0;y2=0;
for j=1:1:L
y1=y1+bval(i,L-j+1)*2^(j-1);
end
x1=(umax-umin)*y1/(2^L-1)+umin;
for j=1:1:L
y2=y2+bval(i,2*L-j+1)*2^(j-1);
end
x2=(umax-umin)*y2/(2^L-1)+umin;
obj(i)=10-x1*x1-x2*x2+x1*x2; %The objective function(目标函数)
xx(i,:)=[x1,x2];
end
func=obj;%Objective function into the fitness function(目标函数转换为适应度函数)
p=func./sum(func);
q=cumsum(p);%Cumulative(累加)
[fmax,indmax]=max(func);%seeking the best in this generation(求当代最佳个体)
if fmax>=bestv
bestv=fmax;%So far, the best fitness value(到目前为止最优适应度值)
bvalxx=bval(indmax,:);%So far the best bit string(到目前为止最佳位串)
optxx=xx(indmax,:);%So far the optimal parameters(到目前为止最优参数)
end
Bfit1(ii)=bestv; % So far the optimal parameters(存储每代的最优适应度)
%%%%Genetic operation starts(遗传操作开始)
%Roulette wheel selection(轮盘赌选择)
for i=1:(N-1)
r=rand;
tmp=find(r<=q);
newbval(i,:)=bval(tmp(1),:);
end
newbval(N,:)=bvalxx;%Optimal retention(最优保留)
bval=newbval;
%Single-point crossover(单点交叉)
for i=1:2:(N-1)
cc=rand;
if cc<pc
point=ceil(rand*(2*L-1));%To obtain one integer from 1 to 2L-1(取得一个1到2L-1的整数)
ch=bval(i,:);
bval(i,point+1:2*L)=bval(i+1,point+1:2*L);
bval(i+1,point+1:2*L)=ch(1,point+1:2*L);
end
end
bval(N,:)=bvalxx;%Optimal retention(最优保留)
%Locus mutation(位点变异)
mm=rand(N,2*L)<pm;%N lines(N行)
mm(N,:)=zeros(1,2*L);%Variation of the last line not change set to 0(最后一行不变异,强制赋0)
bval(mm)=1-bval(mm);
end
%Output(输出)
plot(Bfit1);% Draw the best fitness evolution curves(绘制最优适应度进化曲线)
bestv %Output the optimal fitness value(输出最优适应度值)
这个遗传的我没试过
下面这个是蚁群的结果
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%第一步:变量初始化
C=[1304,2312;3639,1315;4177,2244;3712,1399;3488,1535;3326,1556]
NC_max=200;
m=31;
Alpha=1;
Beta=5;
Rho=0.1;
Q=100;
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)
function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end
2、你好,你的遗传算法解决车辆路径问题的matlab程序代码能给我一份吗,课程设计用,万分感谢
我那最后弄得是假的,弄个假代码,最后PS做的
3、没学过matlab,下面是遗传算法解决车辆路径算法,请解释一下选择,和交叉,谢谢!!!
[x,lumda]=eig(A);
这句是得到A的特征值和相应的特征向量.
会发现x是特征向量,是N*N的矩阵(N是A的大小),即3*3
而lumda也是一个3*3的矩阵,不过它只是对角线上有值。
只要找到对角线上绝对值最大的列。然后输出x相应的列就是最大特征根对应的特征值。
r=abs(sum(lumda)),先对lumda进行列求和。然后求绝对值,实际上就是求对角线元素的绝对值。
n=find(r==max(r)),首先先求出r中最大的值,然后再找到哪一列是最大的值。最后得到的n是最大特征值对应的列。
于是最大特征值为lumda中第n行第n列(lumda是方阵,其实就是求它的第n个对角元)
相应的特征向量,就是x中第n列。
4、请教车辆路径问题 – MATLAB中文论坛
问题叙述的不详细,也没有具体图片或型号,请详细描述一下问题、错误、提示内容等等,这样才可以提出针对性的解决方案,麻烦补充一下。
5、急求车辆路径问题遗传算法的matlab代码!!!!
function [path,lmin]=ga(data,d) %data为点集,d为距离矩阵,即赋权图代码亲自前几天还用来着,绝对可用
6、求车辆路径的蚁群算法matlab源程序,谢谢各位
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
C=[1304,2312;3639,1315;4177,2244;3712,1399;3488,1535;3326,1556;
3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;
2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;
3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;
3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;
2370 2975];
m=31;
Alpha=1;
Beta=5;
Rho=.1;
NC_max=30;
Q=100;
%%第一步:变量初始化
n=size(C,1);%*表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1)); %已访问的城市
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave,'y')
title('平均距离与最短距离')
function DrawRoute(C,R)
%%====================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%--------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%====================================================================
N=length(R)
scatter(C(:,1),C(:,2))
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end
title('旅行商问题优化结果')
7、怎么在matlab中运用遗传算法求解车辆最短路径问题
matlab相关问题,建议去技术邻的社区论坛问问,都是这个领域的大咖,希望能帮到你