1、汽车的原理
汽车原理简单理解就是:发动机发力,通过传动系统,带动四个车轮运动,进而带动整辆车运动。
2、什么是汽车工作原理?
首先汽车是由发动机 变速器 差速器 半轴 车轮等组成的
由发动机做功得到转速和扭矩
然后到变速器的变速变扭 再到差速器进行差速,在通过半轴将动力传输到车轮,使汽车有向前行驶的力矩
3、汽车工作原理
四冲程汽油机
往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。
一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。
(1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。
(3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。
(4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。
四冲程柴油机
二. 四冲程柴油机工作原理
四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同.
(1) 进气冲程
汽车发动机进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。
(2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。
(4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。
4、汽车的工作原理?
1、底盘:底盘的作用是支撑车身,接受发动机产生的动力,并保证汽车能够正常行驶。底盘本身又可分为传动系统、行驶系统、转向系统和制动系统四部分。
2、汽车电器:电气设备包括电源、发动机启动系统以及汽车照明等用电设备,在强制点火的发动机中还包括发动机的点火系统。
3、发动机工作原理:发动机之所以能源源不断地提供动力,得益于气缸内的进气、压缩、做功、排气这四个行程有条不紊地循环运作。
4、车身指的是车辆用来载人装货的部分,也指车辆整体。汽车车身结构主要包括车身壳体、车门、车窗、车前钣制件、车身内外装饰件和车身附件、座椅以及通风、暖气、冷气、空气调节装置等。在货车和专用汽车上还包括车厢和其他装备。
(4)车辆原理扩展资料:
新能源汽车的优点:
1、纯电动汽车在运行过程中可以做到零污染,完全不排放污染大气的有害气体。即使按所耗电量换算为发电厂的排放,造成的污染也少于传统汽车,因为发电厂的能量转换率更高,而且集中排放可以更方便地假装减排治污设备。
2、电动机在运行中的噪音和振动水平都要远远小于传统内燃机。在怠速和低速情况下,电动汽车的舒适性要远高于传统汽车,随着速度的提升,胎噪和风噪成为噪音的主要来源,两者才回到同一水平上。电动汽车的这一特点对于提升汽车的NVH性能无疑会有很大的帮助。
5、汽车的原理?
发动机提供动力,轮胎负责行走,
6、汽车的原理是什么
请问是汽车的什么原理,我给的是发动机的汽车发动机工作原理概述往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点 汽车发动机原理(4张) 火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(compression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压缩比比汽油机高(一般为ε=16~22)。压缩终点的压力为3 000~5 000kPa,压缩终点的温度为750~1 000K,大大超过柴油的自燃温度(约520K)。 (3) 做功冲程 当压缩冲程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入汽缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。汽缸内气体的压力急速上升,最高达5 000~9 000kPa,最高温度达1 800~2 000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。 (4) 排气冲程 柴油机的排气与汽油机基本相同,只是排气温度比汽油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个冲程中只有一个冲程是做功的,其他三个冲程是消耗动力为做功做准备的冲程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代汽车用多采用四缸、六缸和八缸发动机。
7、汽车行驶的基本原理是什么?
发动机的转矩经由传动系统在驱动车轮上施加了一个驱动力矩,力图使驱动轮旋转。在Mt的作用下,驱动车轮将对地面施加一个与汽车行驶方向相反的圆周力F0。根据作用力与反作用力原理,地面也将对驱动车轮施加一个与F0大小相等、方向相反的反作用力Ft,Ft就是使汽车行驶的驱动力,或称牵引力。驱动力作用在驱动轮上,再通过车桥、悬架、车架等行驶系统传到车身上,使汽车行驶。
汽车在行驶过程中会受到各种行驶阻力的作用。汽车在水平道路上匀速行驶时,必须克服来自地面的滚动阻力Ff和来自空气的空气阻力Fω。当汽车在坡道上上坡行驶时,还必须克服重力沿坡道的分力Fi,称为上坡阻力。汽车加速行驶时,还需要克服其惯性力Fj,称为加速阻力。
汽车驱动力与行驶阻力之间的关系式为Ft=Ff+Fω+Fi+Fj,称为汽车的驱动力平衡方程。当Ft>Ff+Fω+Fi时,汽车将加速行驶;当Ft=Ff+Fω+Fi时,汽车将等速行驶;当Ft
8、汽车行驶的原理是什么
静止的汽车如要运动,必须克服四种阻力。
(1)滚动阻力:滚动阻力主要是轮胎和地面之间由于汽车的重力的作用产生相对变形所引起的。阻力的大小,汽车的总重量,轮胎的结构和气压,路面的等级和好坏有直接关系。
(2)空气阻力:空气阻力是由于汽车在运动中表面与空气摩擦,车身前部迎面气流的压力和后部空气涡流造成的真空度所形成的。阻力的大小,与汽车的迎面正投影面积、流线型程度,行驶速度等有关。其中速度影响最大。当车速达到50公里/小时时,发动机功率的30呖左右用于克服空气阻力,80公里川、时,发动机几乎一半消耗在风阻上。所以,中速行驶,汽车最省油,风力和风向也影响风阻的数值。
(3)上坡阻力:上坡阻力取决于汽车的总重量和坡度的大小。汽车的总重量及道路的坡度大,上坡的阻力大,反之,阻力就小。下坡时相反,成为汽车的推动力。
(4)惯性阻力:惯性阻力只是在汽车变速运动时才会产生。根据惯性原理,汽车加速行驶时,惯性阻力与行驶方向相反,当汽车减速时,贮存的动能又力图保持原有的速度,向前滑行。为了克服上述的汽车行驶阻力,必须对汽车施加一个推动力,使之得以按照要求行驶。
汽车发动机通过传动系将扭力传递到后轮,在后轮的边缘与地面接触的部分产生驱动汽车前进的力,即牵引力,当牵引力与汽车行驶总阻力相等时,汽车等速(匀速)行驶。牵引力大于总阻力,汽车加速行驶,小于总阻力,减速行驶。所以,加速或减速,完全由牵引力大小来决定。
9、汽车动的原理
汽车运行是依靠发动机,为了使静止的发动机进入工作状态,必须先用外力转动发动机曲轴,使活塞开始上下运动,气缸内吸入可燃混合气,然后依次进入后续的工作循环。而依靠的这个外力系统就是启动系统。
目前几乎所有的汽车发动机都采用电力起动机启动。当电动机轴上的驱动齿轮与发动机飞轮周缘上的环齿啮合时,电动机旋转时产生的电磁转矩通过飞轮传递给发动机的曲轴,使发动机起动。
电力起动机简称起动机,它以蓄电池为电源,结构简单、操作方便、起动迅速可靠。
发动机工作时,各运动零件均以一定的力作用在另一个零件上,并且发生高速的相对运动,有了相对运动,零件表面必然要产生摩擦,加速磨损。
因此,为了减轻磨损,减小摩擦阻力,延长使用寿命,发动机上都必须有润滑系统。
润滑系统的功用就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的摩擦表面,并在摩擦表面之间形成油膜,减轻机件磨损,以达到提高发动机工作可靠性和耐久性的目的。
10、汽车的原理~~简单易懂
一、汽车行驶的基本原理我们知道汽车要运动,就必须有克服各种阻力的驱动力,也就是说,汽车在行驶中所需要的功率和能量是取决于它的行驶阻力。因此,我们首先要了解的就是阻力。有些人大概会问了,我们只要给汽车装个大功率的发动机就好了,还用得着管它什么阻力么?如果是这样就会面临几个问题:1、究竟多大功率的发动机才可以呢?没有一个对比参照物,我们如何确定我们需要多大功率呢;2、汽车的设计是先设计了汽车的总成,比如底盘,车体等等的部分之后,才设计和选用发动机的,如果不知道这部汽车将面对的阻力,那么我们根本没办法设计出实用的汽车;3、就算有了非常大功率的发动机(足够可否任何在地面行驶时的阻力),并且已经装上了合适的车体,在使用中也会因为行驶性、油耗,排放,保养,维修等问题而使你无法正常使用它。由此可见,我们要了解汽车的动力性,首先就是要知道我们所遇阻力有哪些。一般,汽车的行驶阻力可以分为稳定行驶阻力和动态行驶阻力。稳定行驶阻力包括了车轮阻力、空气阻力以及坡度阻力。1、车轮阻力我们所说的车轮阻力其实是由轮胎的滚动阻力、路面阻力还有轮胎侧偏引起的阻力所构成。当汽车在行驶时会使得轮胎变形,而不是一直保持静止时的圆形,而由于轮胎本身的橡胶和内部的空气都具有弹性,因此在轮胎滚动是会使得轮胎反复经历压缩和伸展的过程,由此产生了阻尼功,即变形阻力。经过试验表明,当汽车超过45m/s(162km/h)时轮胎变形阻力就会急剧增加,这不仅要求有更高的动力,对轮胎本身也是极大的考验。而轮胎在路面行驶时,胎面与地面之间存在着纵向和横向的相对局部滑动,还有车轮轴承内部也会有相对运动,因此又会有摩擦阻力产生。由于我们是被空气所包围的,只要是运动的物体就会受到空气阻力的影响。这三种阻力:变形阻力、摩擦阻力还有轮胎空气阻力的总和便是轮胎的滚动阻力了。在40m/s(144km/h)以下的速度范围内,变形阻力占了轮胎的滚动阻力的90%-95%,摩擦阻力占2%-10%,而轮胎空气阻力所占的比率极小而路面阻力就是轮胎在各种路面上的滚动阻力,由于各种路面不同,而产生的阻力也不同,在这里就不详细研究了。还有便是轮胎侧偏引起的阻力,这是由于车轮的运动方向与受到的侧向力产生了夹角而产生的。2、空气阻力汽车在行驶时,需要挤开周围的空气,汽车前面受气流压力并且形成真空,产生压力差,此外还存在着各层空气之间以及空气与汽车表面的摩擦,再加上冷却发动机、室内通风以及汽车表面外凸零件引起的气流干扰等,就形成了空气阻力。它包括有压差阻力(又称形状阻力),诱导阻力,表明阻力(又称摩擦阻力),内部阻力(又称内循环阻力)以及干扰阻力组成。空气阻力与汽车的形状、汽车的正面投影面积有关,特别时与汽车——空气的相对速度的平方成正比。当汽车高速行驶时,空气阻力的数值将显著增加。我们在汽车指标中经常见得的风阻就是计算空气阻力时的空气阻力系数。这个系数是越小越好。3、坡度阻力即汽车上坡时,其总重量沿路面方向的分力形成的阻力。在动态行驶阻力方面,主要就是惯性力了,它包括平移质量引起的惯性力,也包括旋转质量引起的惯性力矩。现在我们知道,汽车要能够运动起来就必须克服以上所介绍的总阻力,当阻力增加时,汽车的驱动力也必须跟着增加,与阻力达到一定范围内的平衡,我们知道,驱动力的最大值取决于发动机最大的转矩和传动系的传动比,但实际发出的驱动力还受到轮胎与路面之间的附着性能(即包括各种条件的路面情况)的限制。汽车只有在这些综合条件的限制中与各个因素达到平衡,才能够顺利的运动起来,成为我们所需要的工具。